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We introduce a new tool for quantum algorithms called quantum fast-forwarding
(QFF). The tool uses quantum walks as a means to quadratically fast-forward a re-
versible Markov chain. More specifically, with P the Markov chain transition ma-
trix and D =

√
P ◦ PT its discriminant matrix (D = P if P is symmetric), we

construct a quantum walk algorithm that for any quantum state |v〉 and integer t
returns a quantum state ǫ-close to the state Dt |v〉 /‖Dt |v〉 ‖. The algorithm uses

O
(

‖Dt |v〉 ‖−1
√

t log(ǫ‖Dt |v〉 ‖)−1

)

expected quantum walk steps and O(‖Dt |v〉 ‖−1)

expected reflections around |v〉. This shows that quantum walks can accelerate the
transient dynamics of Markov chains, complementing the line of results that proves the
acceleration of their limit behavior.

We show that this tool leads to speedups on random walk algorithms in a very natural
way. Specifically we consider random walk algorithms for testing the graph expansion
and clusterability, and show that we can quadratically improve the dependency of the
classical property testers on the random walk runtime. Moreover, our quantum algorithm
exponentially improves the space complexity of the classical tester to logarithmic. As
a subroutine of independent interest, we use QFF for determining whether a given pair
of nodes lies in the same cluster or in separate clusters. This solves a robust version

of s-t connectivity, relevant in a learning context for classifying objects among a set
of examples. The different algorithms crucially rely on the quantum speedup of the
transient behavior of random walks.

Keywords: quantum algorithms, quantum walks, property testing

1 Introduction and Summary

Quantum walks (QWs) have been shown to provide a speedup over classical Markov chains

in a variety of settings. In the class of search problems, there exist quantum walk algorithms

that accelerate tasks such as detecting element distinctness [1], finding triangles [2], and

hitting marked elements [3, 4, 5]. In the class of sampling problems, there exist quantum

walk algorithms that speed up mixing on graphs [6, 7, 8] and simulated annealing [9, 10],

and allow for quantum state generation [11]. A broader overview is given in the surveys by

Ambainis [12] and Santha [13].

In this work we further develop this list by showing that quantum walks can be used in a

very natural way to speed up random walk algorithms for graph property testing. Central to

this result is a new tool which we call quantum walk fast-forwarding, allowing to quadratically

fast-forward the full dynamics of a reversible Markov chain. Whereas most existing quantum
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2 Quantum Fast-Forwarding: Markov Chains and Graph Property Testing

walk algorithms build on a quadratic speedup towards the Markov chain limit behavior,

quantum fast-forwarding allows to accelerate the transient dynamics as well. This feature is

crucial towards speeding up the classical algorithms for property testing.

Quantum Walk Fast-Forwarding

Many of the above mentioned algorithms are to some extent preceded and inspired by the work

of Watrous [14]. In this work, he introduced quantum walks as a means to quantum simulate

random walks as a superposition on a quantum computer, without resorting to intermediate

measurements. With P the transition matrix of a random walk on a regular graph, and |v〉
some arbitrary initial quantum state, he shows that it is possible to create the quantum state

|P tv〉 = P t |v〉 /‖P t |v〉 ‖

using O(‖P t |v〉 ‖−2 t) expected QW steps, and O(‖P t |v〉 ‖−2) expected copies of |v〉. This

allowed him to quantum simulate the famous random walk algorithm by Aleliunas et al [15] for

undirected graph connectivity, thereby proving that the complexity class symmetric logspace

is contained in a quantum analogue of randomized logspace.

In this work we show that quantum walks can create the state |P tv〉 quadratically faster.

Indeed, we show that quantum walks can quadratically fast-forward a general reversible Markov

chain. More specifically, let P be the transition matrix of a reversible Markov chain on a finite

state space with discriminant matrix D =
√
P ◦ PT , where the square root and “◦”-product

are elementwise. Note that if P is symmetric, as in the work of Watrous, then D = P . Fol-

lowing the work of Szegedy [4], generalizing the approach in [14], we can associate a quantum

walk to P whose spectral properties are closely tied to those of P . These results provide the

ground for most existing quantum walk algorithms, building on a quadratic speedup of the

Markov chain limit behavior. For intermediate times however the behavior of these quantum

walks will in general be unrelated to the Markov chain behavior. We prove that applying

a technique called linear combination of unitaries [16, 17, 18] on the QW operator allows

to mediate this shortcoming. Indeed, combining this technique with a truncated Cheby-

shev expansion of the Markov chain eigenvalue function allows to simulate and accelerate the

(spectral) dynamics of the Markov chain. We name this scheme quantum walk fast-forwarding

(QFF), and it condenses into the following theorem:

Theorem 1 (Quantum walk fast-forwarding with reflection) Given any quantum state

|v〉, t ≥ 0 and ǫ > 0, QFFg (Algorithm 2) outputs a quantum state ǫ-close to |Dtv〉 using

O
(
‖Dt |v〉 ‖−1

√
t log(ǫ‖Dt |v〉 ‖)−1

)

expected QW steps and O(‖Dt |v〉 ‖−1) expected reflections around |v〉.
Much of the previous work that builds on Szegedy’s quantum walk, such as [4, 9], relies

on the quadratic improvement of the spectral gap when compared to the original Markov

chain. This suffices when one is interested in the limit behavior of the dynamics. Our result,

however, captures the transient dynamics which are governed by the complete spectrum of

eigenvalues and corresponding eigenvectors. Similarly to both the preceding work and the

existing classical algorithms, our algorithm makes use of only local information on the graph

and Markov chain. Indeed we show that our algorithm allows quantum walks to simulate the
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dynamics of this entire classical spectrum, all the while retaining a quadratic accelerationa.

Upon completion of this work, we became aware of the recent work on quantum singular

value transformation by Gilyén, Su, Low and Wiebe [20]. This work generalizes a wide range

of advances in quantum algorithms for Hamiltonian simulation, Gibbs sampling and others.

In Section 2.3 we discuss how our algorithm and its properties can alternatively be proved

using this framework.

Quantum Graph Property Testing

We will show that QFF allows to very naturally speed up random walk algorithms for graph

property testing. Given query access to a graph, property testing aims to determine whether

it has a certain property, or whether it is far from having this property. Among the graphs

with degree bound d, as we will be focusing on, two N -node graphs are said to be ǫ-far from

each other if at least ǫdN edges have to be removed or added to turn one graph into the

other. As an example, one can ask whether a given graph is bipartite, or whether it is at least

ǫ-far from any bipartite graph. Testing bipartiteness is a relaxation as compared to effectively

deciding whether the graph is bipartite or not (but possibly very close to bipartite), allowing

for algorithms to work in sublinear time, i.e., scale as o(N) with N the number of nodes in the

graph. This is in contrast to the complexity of deciding properties exactly, which typically

requires a number of queries at least linear in the graph size. In many realistic settings, see

for instance the discussion of massive graphs in [21], linear in the graph size is no longer

computationally feasible, hence sparking the interest in sublinear time algorithms.

We will consider property testers for the expansion and the clusterability of graphs. We

start by discussing the expansion tester of Goldreich and Ron (GR) [22], and we prove how

QFF allows to accelerate this tester. Specifically the problem is to determine whether the

given graph has vertex expansion ≥ Υ, or whether it is ǫ-far from any such graph. The

expansion of a graph forms a measure for the random walk mixing time over the graph.

The idea behind the GR tester is therefore to run a number of random walks and count

the number of pairwise collisions between the end points. If a random walk is congested in

some low expansion set, then this number will be greater than when the random walk mixes

efficiently. It thus forms a measure for the mixing behavior and expansion of the random

walk. The runtime of their algorithm is

O(N1/2+µΥ−2d2ǫ−1 logN),

with the d2Υ−2-factor determined by the random walk runtime.

We show that QFF very naturally allows to speed up this algorithm by fast-forwarding

the random walk, and then using quantum amplitude estimation to estimate the 2-norm of

the random walk probability distribution. This 2-norm will similarly be large if the random

walk congests and small otherwise, thus allowing to detect whether the random walk is able

to efficiently spread out or not. The runtime of our quantum algorithm is

O(N1/2+µΥ−1d3/2ǫ−1 logN),

aThis is reminiscent of the work by Miclo and Diaconis [19] on second order Markov chains, where they show
that decreasing the probability that a Markov chain backtracks improves not only the spectral gap, but the
entire spectrum. In contrast to quantum walks, however, this improvement will generally only be a constant
factor, rather than quadratic.
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which basically follows from quadratically improving the random walk runtime. In addition,

our algorithm only requires polylog(N) space, as compared to the poly(N) space requirements

of the GR tester. We note that in preceding work Ambainis, Childs and Liu [23] have also

used quantum walks to speed up the GR tester, be it in an indirect way. Roughly they apply

Ambainis’ element distinctness algorithm [1] to speed up the search of collisions between ran-

dom walk end points from N1/2 to N1/3. Compared to our result, they find a complimentary

speedup to O(N1/3+µΥ−2d2ǫ−1 logN). Due to the use of the element distinctness algorithm,

their algorithm does require poly(N) space.

We continue by discussing the more recent line of algorithms for testing graph clusterability

[24, 25], forming a natural generalization of the work of Goldreich and Ron. We discuss how

these techniques make use of algorithms for classifying nodes in clusters, and show how QFF

allows to accelerate these algorithms. Such node classification is of relevance beyond the

setting of property testing, allowing for instance nearest-neighbor classification of nodes in a

learning problem.

We remark that work by Valiant and Valiant [26] shows that estimating the distance in 2-

norm between given probability distributions is much easier and more stable than estimating

the distance in 1-norm, which would otherwise be the natural choice. This underlies the fact

that many graph property testing algorithms estimate the 2-distance between random walk

distributions. QFF allows to cast a probability distribution p as a quantum state |p〉 = p/‖p‖,
which is naturally associated to the 2-norm. As a consequence, QFF very naturally leads to

quantum algorithms for estimating the 2-norm distance between random walk distributions,

directly leading to the quantization and speedup of the above graph property testers.

2 Quantum Walk Fast-Forwarding

In this section we elaborate the details of the quantum walk fast-forwarding scheme. First, we

formally introduce the concept and characteristics of a quantum walk associated to a reversible

Markov chain. These results provide the ground for most existing quantum walk algorithms,

building on a quadratic speedup of the Markov chain limit behavior. We discuss how these

results fall short for speeding up any transient behavior of the Markov chain. Second, we

prove how a technique called linear combinations of unitaries can be used to mediate this

shortcoming. By combining this technique with a truncated Chebyshev expansion of the

general Markov chain eigenvalue function, we arrive at our quantum algorithm for quantum

walk fast-forwarding.

2.1 Preliminaries: Quantum Walk Schemes

In this section we review the aforementioned quantum walk scheme by Watrous [14], and

show how it gives rise to the subsequent work on quantum walk speedups by Ambainis [1],

Szegedy [4], Magniez et al [27], and many others. Apart from a new proof of Proposition 1,

the results in this section are known, and if necessary a reader could skip the section. For the

rest of this paper we will only consider simple graphs G = (V , E) with node set V and edge

set E ⊆ V × V . We will also refer to a Markov chain by its stochastic transition matrix P .
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2.1.1 Watrous Scheme

Consider a Markov chain P on a graph G = (V , E), and an initial probability distribution

v over V . In early work, Watrous [14] proposed a quantum walk scheme for creating the

quantum state |P tv〉 associated to the classical distribution P tv, defined by

∣∣P tv
〉
=

1

‖P tv‖
∑

(P tv)(j) |j〉 , (1)

where (P tv)(j) denotes the j-th component of the probability vector P tv. For a general

nonzero vector w, we will use the notation |w〉 = 1
‖w‖

∑
w(j) |j〉 which associates a quantum

state |w〉 to w. The quantum walk associated to P takes places on the extended or “coined”

node space V̂ = V × {♭,V} = {(i, j) | i ∈ V , j ∈ {♭,V}}, where “♭” denotes some canonical

initialization state. The associated Hilbert space is H = span{|i, j〉 | (i, j) ∈ V̂}. We will

call the subspace H♭ = span{|i, ♭〉 | i ∈ V} the flat subspace, associated to the projector

Π♭ = I ⊗ |♭〉 〈♭|, with I the identity operator on the first register. The discrete-time quantum

walk is described by a unitary operator UP on H, defined by a shift operator S and a coin

toss operator V ,

UP = V †SV. (2)

We will often write U instead of UP when the context allows it. The coin toss operator is

defined as V =
∑

i |i〉 〈i| ⊗ Vi, where Vi is such that

V |i, ♭〉 = |i〉 ⊗ Vi |♭〉 = |i〉 ⊗ |ψi〉 = |i〉 ⊗
∑

j

√
P (j, i) |j〉 . (3)

By the design of the QW scheme, as we will see later, it suffices to characterize the action of

Vi on the state |♭〉. The operators Vi can then be arbitrarily completed into unitary matrices.

The shift operator is defined by the permutation

|i, j〉 7→ S |i, j〉 =
{
|j, i〉 , (i, j) ∈ E ,
|i, j〉 , otherwise,

and S |i, ♭〉 = S |i, ♭〉. It is now easy to prove the below lemma, stating that the restriction of

U to the flat subspace implements the discriminant matrix

D =
√
P ◦ PT ,

with the square root and “◦”-product elementwise. The discriminant matrix is closely related

to the original Markov chain P , and if P is reversible then they share the same eigenvalues.

We will often write D |v, ♭〉 as shorthand for (D ⊗ I) |v, ♭〉.

Lemma 1 ([14]) For any quantum state |v, ♭〉, it holds that

Π♭U |v, ♭〉 = D |v, ♭〉 .

Proof. This directly follows from the fact that for any node i it holds that U |i, ♭〉 =∑
j

√
P (i, j)P (j, i) |j, ♭〉+ |ψ⊥〉, where |ψ⊥〉 is some state perpendicular to the flat subspace

H♭. By linearity, the proposition follows for general |v, ♭〉. �
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This gives rise to an easy QW algorithm for creating |Dtv〉. Namely, do t times: (i) apply a

single step of the QW U , (ii) perform the measurement corresponding to the measurement

operators Π♭ and I − Π♭. If each of the measurements returns “♭”, which happens with a

probability
‖Dt |v〉 ‖2

‖Dt−1 |v〉 ‖2
‖Dt−1 |v〉 ‖2
‖Dt−2 |v〉 ‖2 . . .

‖D |v〉 ‖2
‖ |v〉 ‖2 = ‖Dt |v〉 ‖2,

then the output state is |Dtv, ♭〉. For symmetric P , as in Watrous’ original paper, it holds

that D = P , and so this approach effectively returns the quantum state |P tv〉 that we were

looking for. It requires t QW steps and succeeds with a probability ‖Dt |v〉 ‖2.

2.1.2 Quadratically Improved Spectrum

The main idea of our new QFF tool is that we can quadratically accelerate the number of QW

steps required: we can create the state |Dtv〉 using O(
√
t) QW steps, succeeding with the same

probability ‖Dt |v〉 ‖2. To do so we make use of work that followed up on the QW approach

by Watrous, mainly initiated by Ambainis [1] and Szegedy [4] with the aim of accelerating

classical search problems. We will discuss how in a certain sense this operator quadratically

improves the Markov chain spectrum, yet falls short of speeding up its full dynamics. In the

next section we then present our more fine-grained scheme that resolves this issue.

They proposed an alternative QW, essentially adding a reflection around the flat subspace

H♭ to the QW operator U by Watrous:

W = R♭U = (2Π♭ − I)U. (4)

Their key insight is captured in the following proposition, for which we provide a new proof

which explicitly builds on the insight from Watrous’ work. We will denote by Tt the t-th

Chebyshev polynomial of the first kind.

Proposition 1 ([4]) For any |v, ♭〉, it holds that

Π♭W
t |v, ♭〉 = Tt(D) |v, ♭〉 .

As a consequence, if (cos θ, |v〉) is an eigenpair of D, then

Π♭W
t |v, ♭〉 = Tt(cos θ) |v, ♭〉 = cos(tθ) |v, ♭〉 .

Proof. We easily find a recursion formula for Π♭W
t:

Π♭W
t = Π♭R♭U(2Π♭ − I)UW t−2 = 2Π♭U(Π♭W

t−1)−Π♭W
t−2

using the fact that Π♭R♭ = Π♭, and U
† = U so that U2 = UU † = I. Since Π♭W

0 = Π♭ and

Π♭W = Π♭U , this shows that we can express Π♭W
t as a polynomial in Π♭U . The Chebyshev

polynomials of the first kind Tt are defined by

T0(x) = 1, T1(x) = x, Tt(x) = 2xTt−1(x) − Tt−2(x).

Setting x = Π♭U and T0(Π♭U) = Π♭, this shows that we can express Π♭W
t as Π♭W

t =

Tt(Π♭U). From Lemma 1 we know that (Π♭U)t |v, ♭〉 = Dt |v, ♭〉, and therefore

Π♭W
t |v, ♭〉 = Tt(D) |v, ♭〉 .
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Using the geometric definition of Tt, Tt(cos θ) = cos(tθ), we see that if D |v, ♭〉 = cos θ |v, ♭〉
then

Π♭W
t |v, ♭〉 = Tt(cos θ) |v, ♭〉 = cos(tθ) |v, ♭〉 .

�

This proposition constitutes the basis from which most of the aforementioned quantum algo-

rithms start, and it will be the basis from which this work starts. The gist of the speedup comes

from comparing the original action of Dt on an eigenpair (cos θ, |v〉), Dt |v, ♭〉 = cost(θ) |v, ♭〉,
with the action of Π♭W

t, Π♭W
t |v, ♭〉 = cos(tθ) |v, ♭〉. Taylor expanding the respective eigen-

value functions gt(θ) = cost(θ) and ft′(θ) = cos(t′θ) yields

gt(θ) = 1− tθ2

2
+O(t2θ4), whereas ft′(θ) = 1− t′2θ2

2
+O(t′4θ4).

Setting t′ =
√
t, we see that both expressions are equal up to second order in t. This suggests

that the quantum walk quadratically fast-forwards the Markov chain, and so Π♭W
√
t ≈ Π♭D

t.

This observation underlies a range of quantum walk speedup results which are mainly

concerned with accelerating the Markov chain asymptotics, where one is interested in the

limit regime limt→∞ P tv = π and one wishes to approximate the quantum state |π〉. In these

cases, the timescale for the classical Markov chain is for instance set by the inverse of the

spectral gap 1
δ = 1

1−λ2

(for mixing tasks and Gibbs sampling, see [9, 28]), or by the sum of the

inverses
∑ 1

1−λk
(for hitting tasks, see [4]), where {λk = cos θk} denotes the set of eigenvalues

of P . For these purposes, the low order conclusions from the above expansion generally suffice

to achieve a quantum walk speedup in generating |π〉.
The main issue with the above analysis is that it breaks down for t and eigenvalues θ such

that tθ ≈ 1: gt(θ) and ft(θ) start to diverge from each other, thus preventing the quantum

walk from simulating the full dynamics of the Markov chain. As the main contribution in the

following section we will construct a more involved and fine-grained quantum walk scheme

whose eigenvalue function closely approximates the Markov chain eigenvalue function gt(θ)

for all values of t and θ, without losing the quadratic fast-forward.

2.2 Quantum Fast-Forwarding Algorithm

In this section we develop our main tool: a quantum walk algorithm for quantum simulating

Markov chains quadratically faster than the original dynamics. Thereto we will make use

of the concept of linear combinations of unitaries. We will use this technique to manipulate

the eigenvalues of the quantum walk such that they better approximate the Markov chain

eigenvalues.

2.2.1 LCU and Chebyshev Expansion

We can create some wiggle room on the implementation of the quantum walk Π♭W
t, and

therefore on its eigenvalue function, by implementing linear combinations of Π♭W
t for different

t. A similar approach has been used in for instance [16, 17] for Hamiltonian simulation and in

[18] for optimizing quantum SDP solvers, where they call this technique linear combination

of unitaries (LCU). We extract the below Lemma 2 from this existing work, and elaborate

its details for completeness. Below the lemma we discuss how it can be used for our purpose.
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The lemma shows how to implement a linear combination

τ∑

l=0

qlΠ♭W
l,

where we assume that ql ≥ 0 and
∑
ql = 1. To do so, we will again enlarge the state space

from HV̂ to HV̂×[τ ], with [τ ] = {0, 1, 2, . . . , τ}. We will identify |0〉 = |♭〉 and call the span

of states |j, ♭, ♭〉 ≡ |j, ♭♭〉, j ∈ V , the flat subspace of HV̂×[τ ]. The projector Π♭ will either

denote the projector on the flat subspace of HV̂ or HV̂×[τ ], whichever it is will be clear from

the context. The construction is very similar to the Watrous quantum walk scheme. It builds

on a coin toss Vq on HV̂×[τ ], defined by the coefficients ql as

Vq |ψ, ♭〉 =
τ∑

l=0

√
ql |ψ, l〉 .

Then the controlled W-operator Wctrl =
∑τ
l=0W

l ⊗ |l〉 〈l| is applied which, conditioned on

the integer l in the last register, applies the operator W l:

Wctrl Vq |ψ, ♭〉 =Wctrl

τ∑

l=0

√
ql |ψ, l〉 =

τ∑

l=0

√
qlW

l |ψ, l〉 .

Finally, as in the Watrous QW, the operator V †
q is applied, returning a state

V †
q WctrlVq |ψ, ♭〉 =

τ∑

l=0

qlW
l |ψ, ♭〉+ |ψ⊥〉 , (5)

where |ψ⊥〉 is some quantum state perpendicular to the flat subspace. This leads to the

following lemma, where we set Wτ = V †
q WctrlVq.

Lemma 2 (LCU) For any |v, ♭♭〉, it holds that

Π♭Wτ |v, ♭♭〉 =
( τ∑

l=0

qlΠ♭W
l |v, ♭〉

)
⊗ |♭〉 =

( τ∑

l=0

qlTl(D) |v〉
)
⊗ |♭♭〉 .

Implementing the operator Wτ requires O(τ) QW steps.

Proof. From (5) we see that

Π♭V
†
qWctrlVq |v, ♭♭〉 =

( τ∑

l=0

qlΠ♭W
l |v, ♭〉

)
⊗ |♭〉 .

Combined with Proposition 1, and by linearity, this proves the inequality. In for instance

[29, 30] it is discussed that the operator Wctrl can be implemented in O(τ) QW steps, and

the local coin tosses Vq and V †
q require no QW steps. �

This lemma shows that if we apply the operator Wτ on |v, ♭♭〉, and we perform a measure-

ment {Π♭, I−Π♭}, then we retrieve the state
(∑τ

l=0 qlTl(D) |v〉
)
⊗|♭♭〉 (up to normalization)
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with a probability ‖∑τ
l=0 qlTl(D) |v〉 ‖2. The corresponding eigenvalue function is then

f̃t(θ) =

τ∑

l=0

ql cos(lθ).

In the following we will choose the coefficients ql so that f̃t′(θ) approximates the original

eigenvalue function gt(θ) = cost(θ) for t′ ∈ O(
√
t). For this purpose we can use the Chebyshev

expansion of gt. Indeed, from for instance [31] we know that

xt =

t∑

l=0

plTl(x),

where pl represents the probability that |Xt| = l for Xt a t step random walk starting in the

origin:

pl = P(|Xt| = l) =





1
2t−1

(
t
t−l
2

)
l > 0, t = lmod 2,

1
2t

(
t
t
2

)
l = 0, t = 0mod2,

0 elsewhere.

(6)

Again using the geometric definition of the Chebyshev polynomials, Tt(cos(θ)) = cos(tθ), and

setting x = cos(θ), this implies that gt can be exactly expanded into the eigenfunctions ft:

gt(θ) = cost(θ) =

t∑

l=0

pl cos(lθ) =

t∑

l=0

plft(lθ). (7)

Using the above lemma we can now choose ql = pl to exactly simulate the original dynamics.

The problem is that in this case τ = t, and implementingWτ therefore requiresO(t) QW steps,

giving no speedup with respect to the simple quantum simulation scheme. We can resolve this

by noting that pl approaches a normal distribution with standard deviation Θ(
√
t), so that

we can approximate it exponentially well by its support on a O(
√
t) interval, as we elaborate

in the below lemma.

Lemma 3 Let ǫ > 0. If C ≥ 2 ln 2
ǫ then for all θ

∣∣∣∣ cos
t(θ) −

⌈
√
Ct⌉∑

l=0

pl cos(lθ)

∣∣∣∣ ≤ ǫ.

Proof. Let t′ = ⌈
√
Ct⌉. The proof comes down to bounding the quantity p>t′ =

∑t
l=t′+1 pl.

Indeed, by (7) we can easily calculate that

∣∣∣∣ cos
t(θ)−

t′∑

l=0

pl cos(lθ)

∣∣∣∣ ≤ p>t′ ,

so that it suffices to prove that p>t′ ≤ ǫ. We can bound p>t′ since it represents the probability

that |Xt| > t′ where Xt is a t step random walk Xt. By Hoeffding’s inequality we know that
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p>t′ ≤ 2 exp
(
− t′2/(2t)

)
. For t′ = ⌈

√
Ct⌉ and C ≥ 2 ln 2

ǫ this shows that p>⌈
√
Ct⌉ ≤ ǫ, which

proves the lemma. �

This lemma shows that it is possible to pointwise approximate the original eigenvalue

function cost(θ), up to an error ǫ, using the truncated Chebyshev expansion

gtτ (θ) =

τ∑

l=0

pl cos(lθ)

for τ ∈ O(
√
t log 1

ǫ ). We note that a similar approximation in combination with LCU was

used for a different purpose in [32]. In the next section we combine this approximation lemma

with the LCU lemma, leading to our quantum fast-forwarding scheme.

2.2.2 Quantum Fast-Forwarding Algorithm

Combining the above lemmas, we can propose our QFF algorithm. It builds on the operator

Wτ from Lemma 2, with coefficients ql derived from Lemma 3, so that

Π♭Wτ |v, ♭♭〉 =
1

1− p>τ

τ∑

l=0

plΠ♭W
l |v, ♭♭〉

=

(
1

1− p>τ

τ∑

l=0

plTl(D) |v〉
)
⊗ |♭♭〉 ,

(8)

where the pl are defined in (6).

Algorithm 1 Quantum Fast-Forwarding QFF(|v〉 , P, t, ǫ)
Input: quantum state |v〉 ∈ HV , reversible Markov chain P , t ∈ N, ǫ > 0
Do:

1: set ǫ′ = ‖Dt |v〉 ‖ǫ/2 and τ =
⌈√

2t ln(2/ǫ′)
⌉

2: initialize the registers R1R2R3 with the state |v, ♭♭〉
3: apply the LCU operator Wτ as in (8) on R1R2R3

4: perform the measurement {Π♭♭, I −Π♭♭}
5: if outcome 6= “♭♭” then output “Fail” and stop

Output: registers R1R2R3

Theorem 2 (Quantum Fast-Forwarding) The QFF algorithm QFF(|v〉 , P, t, ǫ) outputs

a state ǫ-close to |Dtv, ♭♭〉 with success probability at least (1 − ǫ)‖Dt |v〉 ‖2. Otherwise it

outputs “Fail”. The algorithm uses a number of QW steps

τ ∈ O

(√
t log1/2

1

ǫ‖Dt |v〉 ‖

)
.

Proof. Let {(cos θk, |vk〉), 1 ≤ k ≤ |V|} be a complete orthonormal set of eigenpairs of D.

Then we can write |v〉 = ∑
k αk |vk〉 and the goal state |Dtv〉 = ∑

k αk cos(θk)
t |vk〉 /‖Dt |v〉 ‖.

From Lemma 2 we know that if we apply the operator Wτ on |v, ♭♭〉, and we perform a
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measurement {Π♭, I −Π♭}, then we retrieve the state

1∥∥ 1
1−p>τ

∑τ
l=0 qlTl(D) |v〉

∥∥

(
1

1− p>τ

τ∑

l=0

qlTl(D) |v〉
)
⊗ |♭♭〉

=
1∥∥∑τ

l=0 qlTl(D) |v〉
∥∥

( τ∑

l=0

qlTl(D) |v〉
)
⊗ |♭♭〉

with a success probability ‖ 1
1−p>τ

∑τ
l=0 plTl(D) |v〉 ‖2. We will denote the state |ψτ 〉 =

∑τ
l=0 qlTl(D) |v〉. By the approximation from Lemma 3 we know that if τ =

⌈√
2t ln 2

ǫ′

⌉

then |ψτ 〉 will be ǫ′-close to Dt |v〉:

∥∥|ψτ 〉 −Dt |v〉
∥∥ =

√√√√∑

k

∣∣∣∣
τ∑

l=0

ql cos(lθ)− cost(θk)

∣∣∣∣
2

· |αk|2

≤
√
ǫ′2

∑

k

|αk|2 = ǫ′.

Using standard manipulations we know that for any two nonzero vectors it holds that ‖v/‖v‖−
w/‖w‖‖ ≤ 2‖v − w‖/‖w‖. As a consequence we can bound

∥∥∥∥
|ψ〉

‖ |ψ〉 ‖ − Dt |v〉
‖Dt |v〉 ‖

∥∥∥∥ ≤ 2ǫ′

‖Dt |v〉 ‖ = ǫ,

using the fact that we chose ǫ′ = ‖Dt |v〉 ‖ǫ/2. We can now also bound the success probability

using the reverse triangle inequality:
∥∥∥∥

1

1− p>τ

τ∑

l=0

plTl(D) |v〉
∥∥∥∥
2

≥
∥∥∥∥

τ∑

l=0

plTl(D) |v〉
∥∥∥∥
2

≥ (‖Dt |v〉 ‖ − ǫ′)2 ≥ (1− ǫ)‖Dt |v〉 ‖2.

By Lemma 2 we know that implementing the operator Wτ requires a number of QW steps

τ =

⌈√
2t ln1/2

4

ǫ‖Dt |v〉 ‖

⌉
∈ O

(√
t log1/2

1

ǫ‖Dt |v〉 ‖

)
.

This finalizes the proof. �

This theorem establishes our algorithm for quantum fast-forwarding Markov chains. It

winds back the quantum walk speedup of the Ambainis-Szegedy scheme on the Markov chain

asymptotic behavior to the original problem of quantum simulating Markov chains for any

fixed timestep, showing that we can achieve the same quadratic acceleration that is character-

istic for this scheme. The success probability is proportional to ‖Dt |v〉 ‖2, so that ‖Dt |v〉 ‖−2

expected iterations are necessary for the scheme to succeed. In the next section we show how

to quadratically improve this. We mention that the norm ‖Dt |v〉 ‖ will be small when the

Markov chain spreads out from a small set to a large set, e.g., going from a single node to

the uniform distribution yields ‖Dt |v〉 ‖ = N−1/2. This reflects the fact that it is costly for

the quantum algorithm to create a superposition over a large number of queried elements (see

[33] for a discussion and a more rigorous analysis of this phenomenon).
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2.2.3 Amplitude Amplification

We can improve the success probability to a constant by replacing the final measurement in

the algorithm with amplitude amplification, provided that we can reflect around the initial

state |v, ♭♭〉 (≡ |v, ♭〉, we will use the shorthand ♭ to denote ♭♭), i.e., implement the reflection

operator

Rv = 2 |v, ♭〉 〈v, ♭| − I.

Thereto we will use the following proposition by Brassard et al [34], demonstrating how we

can retrieve a component Π♭ |ψ〉 of some quantum state |ψ〉 by performing reflections around

|ψ〉 and around the image of Π♭.

Proposition 2 (Amplitude amplification [34]) Given an initial state |ψ〉 and a projec-

tion operator Π♭, with Π♭ |ψ〉 6= 0. Define the reflections Rψ = 2 |ψ〉 〈ψ|− I and R♭ = 2Π♭− I,
and set m = ⌊π/(4θ)⌋ with θ ∈ (0, π/2] such that sin θ = ‖Π♭ |ψ〉 ‖. If we apply the operator

(−RψR♭) m times on the state |ψ〉, and we perform a measurement {Π♭, I − Π♭}, then we

find back the state Π♭ |ψ〉 /‖Π♭ |ψ〉 ‖ with probability at least max{1− sin2 θ, sin2 θ} ≥ 1/2.

This implementation of amplitude amplification requires a very good estimate of the initial

success probability ‖Π♭ |ψ〉 ‖2 to determine m. If m is chosen either too small or too large,

then the guarantees on the success probability are lost, a problem often referred to as the

“soufflé problem”. A remedy is however proposed in [34], in which iteratively different guesses

for m are used. They show that this approach also yields a success probability ≥ 1/2, while

still applying the operator (−RψR♭) only O(1/‖Π♭ |ψ〉 ‖) times. For clarity we will implicitly

rely on this fact, and throughout assume that we can appropriately determine the parameter

m.

In our QFF algorithm we have |ψ〉 = Wτ |v, ♭〉, and we wish to retrieve the component

Π♭ |ψ〉 = Π♭Wτ |v, ♭〉. Amplitude amplification shows that we can do so with constant success

probability by implementing the operator (−RψR♭) for a number of times in Θ(1/‖Π♭ |ψ〉 ‖).
The reflection R♭ = 2Π♭ − I is considered an elementary operation on the basis states, which

we can implement with a negligible cost. The following lemma shows that we can implement

the reflection Rψ = 2 |ψ〉 〈ψ| − I using O(τ) QW steps.

Lemma 4 The operator Rψ can be implemented using O(τ) QW steps and a reflection Rv
around the initial state |v, ♭〉.
Proof. We can rewrite the reflectionRψ = 2 |ψ〉 〈ψ|−I =WτRvW

†
τ , so that we can implement

the reflection by implementing the operatorsWτ ,W
†
τ , and Rv. To implement the operatorW †

τ ,

we recall that Wτ = V †
q

[∑τ
l=0 |l〉 〈l| ⊗ (R♭U)l

]
Vq and so W †

τ = V †
q

[∑τ
l=0 |l〉 〈l| ⊗ (UR♭)

l
]
Vq.

Here we also used the fact that U = V †SV with S = S†, as in (2), so that U † = U . We already

discussed in Lemma 2 that a controlled operator
∑τ

l=0 |l〉 〈l| ⊗ UR♭ can be implemented in

O(τ) QW steps, so that both Wτ and W †
τ can be implemented in O(τ) QW steps. �

It follows that the total operator (−RψR♭) can be implemented using O(τ) QW steps, a

reflection around the initial state |v, ♭〉, and a number of elementary operations. In many

cases the initial state will be an elementary basis state, so that the reflection Rv will also

be elementary, and the main cost boils down to O(τR) QW steps. We can now propose

the improved QFF algorithm, QFFg, in Algorithm 2. Theorem 3 proves its correctness and
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complexity. We note that this describes the Monte Carlo version of QFF. We can easily

retrieve the Las Vegas version, as stated in Theorem 1 in the introduction, by repeating the

below algorithm until it is successful. As mentioned at the end in previous section, we improve

the expected number of QW steps for the QFF algorithm to succeed from Θ̃(‖Dt |v〉 ‖−2
√
t)

to Θ̃(‖Dt |v〉 ‖−1
√
t).

Algorithm 2 Quantum Fast-Forward with Reflections QFFg(|v〉 , P, t, ǫ)
Input: quantum state |v〉 ∈ HV , Markov chain P , t ∈ N, ǫ > 0
Do:

1: set ǫ′ = ‖Dt |v〉 ‖ǫ/2 and τ =
⌈√

2t ln(2/ǫ′)
⌉

2: set m = ⌊π/(4θ)⌋, where 0 < θ ≤ π/2 s.t. sin θ = ‖Π♭Wτ |v〉 ‖
3: initialize registers R1R2R3 with the state |v, ♭♭〉
4: apply the LCU operator Wτ on R1R2R3

5: apply the operator (−RψR♭)m = (−WτRvW
†
τR♭)

m ⊲ Amplitude Amplification
6: perform the measurement {Π♭♭, I −Π♭♭}
7: if outcome 6= “♭♭” then output “Fail” and stop

Output: registers R1R2R3

Theorem 3 The QFFg algorithm QFFg(|v〉 , P, t, ǫ) outputs a state ǫ-close to |Dtv〉 with suc-

cess probability at least 1/2. Otherwise, it outputs “Fail”. The algorithm uses Θ(1/‖Dt |v〉 ‖)
reflections around the initial state, and a number of QW steps

O(mτ) ∈ O

( √
t

‖Dt |v〉 ‖ log1/2
1

ǫ‖Dt |v〉 ‖

)
.

Proof. The algorithm straightforwardly applies the amplitude amplification scheme on the

state Wτ |v, ♭〉. From Proposition 2 we know that the scheme has a success probability ≥
max{1− sin2 θ, sin2 θ} ≥ 1/2. The number of QW steps for implementing Wτ and (−RψR♭)m
is O(τ) respectively O(mτ). We know that m ∈ O(1/‖Π♭Wτ |v, ♭〉 ‖), and from the proof of

Theorem 2 we can bound ‖Π♭Wτ |v, ♭〉 ‖ ≥ ‖Dt |v〉 ‖ − ǫ′ = (1 − ǫ/2)‖Dt |v〉 ‖ ∈ Θ(‖Dt |v〉 ‖)
for all ǫ < 1/2. �

2.3 Quantum Singular Value Transformation

After completion of this work, we were pointed to the recent work of Gilyén et al [20] on

quantum singular value transformation. They develop a framework that generalizes and

unifies the principles underlying a large number of quantum algorithms for problems such as

Hamiltonian simulation, Gibbs sampling, and many more. In the following we note that an

alternative derivation of our QFF algorithm and its properties can be constructed from this

framework. Specifically, they consider a general projected unitary encoding of an operatorA =

ΠUΠ ′, where Π ,Π ′ are projectors and U is a unitary operator. We can see the quantum walk

encodingD = Π♭UΠ♭ of the discriminant matrix of a Markov chain, as in Lemma 1, as a special

case of such encoding. If A has a singular value decomposition A = WΣV †, then they show

that it is possible to transform the singular values of A. More precisely, given some degree-d

polynomial p, they construct a quantum circuit that implements the operatorWp(Σ)V † using
the operators U and U † at most d times. They then cite a result from Sachdeva and Vishnoi
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[35] showing that if p(Σ) = Σd, then this polynomial can be efficiently approximated using

a polynomial with degree O(
√
d) (this result also follows from our Chebyshev truncation in

Lemma 3). By applying their quantum singular value transformation on this approximating

polynomial, we can retrieve our QFF algorithm.

3 Quantum Property Testing

In this section we show how QFF allows to speed up random walk algorithms for property

testing on graphs. Specifically, we will consider property testers for the expansion and the

clusterability of graphs. We leave it as an open question whether similar speedups can be

found for other graph property testers, an interesting example of which is the recent random

walk algorithm by [36] for testing the occurrence of forbidden minors. In the first section we

will discuss the expansion tester of Goldreich and Ron (GR), which they presented in later

work [22], and we prove how QFF allows to accelerate this tester very naturally. We compare

this speedup to the preceding work by Ambainis, Childs and Liu [23], and discuss how they

achieve a complementary speedup to ours. Then we discuss the more recent line of algorithms

for testing graph clusterability, aimed at probing for instance the community structure of a

given graph. We discuss how these testers make use of algorithms for classifying nodes in

clusters, and show how QFF allows to accelerate these algorithms. Such node classification

is of relevance beyond the setting of property testing, allowing for instance nearest-neighbor

classification of nodes in a learning problem.

3.1 Classical Expansion Tester

To formalize the concept of a graph property tester, we must introduce the notion of oracle or

query access to a graph as used throughout the literature on property testing. Query access

to an N -node undirected graph with degree bound d means that we can query the graph with

a string (v, i) ∈ [N ] × [d], upon which we receive either the i-th neighbor w ∈ [N ] of v, or

a special symbol in case v has less than i neighbors. Clearly this model allows to perform

a random walk over the graph. In addition it allows to generate a uniformly random node

by simply generating a random number in [N ]. This differs from the more classical Markov

chain setting where possibly we are only given a single node, and we must explore the graph

in a completely local manner.

Given such query access to a graph, the task of a property tester is to determine whether

the graph has a certain property or is far from any graph having that property. To formalize

this, a distance measure between two N -node graphsG and G′ is defined, equaling the number

of edges that have to be added or removed from G to transform it into G′. With E and E ′ the
edge sets of G resp. G′, this equals the size of the symmetric difference |E△E ′|. We say that

two N -node graphs G and G′ with degree bound d are ǫ-far from each other if |E△E ′| ≥ ǫNd.

Given a graph and a parameter ǫ, a property tester should correctly distinguish between the

graph having a certain property, and the graph being at least ǫ-far from any graph with that

property (i.e., the distance between the graph and any graph with that property is ≥ ǫNd).

When given a graph that is neither, the algorithm can do whatever.

Goldreich and Ron [22] studied a property tester for the expansion of a graphb. The

bThey actually studied a property tester for the spectral gap of a graph, for which currently there is no known
sublinear algorithm. All follow-up work however considers the closely-related graph expansion.
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expansion or vertex expansion of a graph G = (V , E) is defined by

min
|S|≤|V|/2

|∂Sc|
|S| ,

where ∂Sc denotes the outer boundary of S, i.e., the set of nodes in Sc = V\S that have an

edge going to S. For some given parameter Υ, an expansion tester should determine whether

a given graph has expansion ≥ Υ, or whether it is at least ǫ-far from any such graph. GR, and

the subsequent literature [37, 38, 39, 23], have relaxed this setting somewhat. They propose

the following definition:

Definition 1 An algorithm is an (Υ, ǫ, µ)-expansion tester if there exists a constant c > 0,

possibly dependent on d, such that given parameters N , d, and query access to an N -node

graph with degree bound d it holds that

• if the graph has expansion ≥ Υ, then the algorithm outputs “accept” with probability

at least 2/3,

• if the graph is ǫ-far from any graph having expansion ≥ cµΥ2, then the algorithm outputs

“reject” with probability at least 2/3.

In the strict setting of property testing, the expression “≥ cµΥ2” in the second bullet should

be replaced by “≥ Υ”. Although unproven, the relaxation in this definition seems necessary

to allow for efficient (sublinear) testing. GR [40] conjectured that the below Algorithm 3 is a

(Υ, ǫ, µ) expansion tester. They also proved that any classical expansion tester must make at

least Ω(
√
N) queries to the graph.

Algorithm 3 Graph Expansion Tester

Input: parameters N and d; query access to N -node graph G with degree bound d; expansion
parameter Υ; accuracy parameter ǫ; running time parameter µ < 1/4
Do:

1: for T ∈ Θ(ǫ−1) times do
2: select a uniformly random starting vertex s
3: perform m ∈ Θ(N1/2+µ) independent random walks

of length t ∈ Θ(d2Υ−2 logN), starting in s
4: count number of pairwise collisions between the endpoints of the m random walks
5: if the count is greater than M ∈ Θ(N2µ), abort and output “reject”

Output: if no “reject”, output “accept”

The intuition behind the algorithm is very clear. It builds on the use of a random walk

P on the given graph, which starting from a node v jumps to any of its dv neighbors with a

probability 1/(2d), and stays put otherwise:

P (u, v) =






1/(2d) (v, u) ∈ E

1− dv/(2d) u = v

0 elsewhere.

(9)

This walk is lazy and symmetric, and hence converges to the uniform distribution. If the

graph has vertex expansion Υ, then one can prove that the mixing time of this random walk
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is O(d2Υ−2 logN). As a consequence, the probability distribution of the random walks in

step 2 of the algorithm must be close to uniform. If p describes the probability distribution

of the endpoint of a random walk starting from some fixed node, then the probability of a

pairwise collision between two independent endpoints, i.e., the probability that the random

walks end in the same node, is given by
∑

p(j)2 = ‖p‖2.

This will be close to 1/N if p is close to uniform. If on the other hand the expansion of the

graph is ≪ Υ, then random walks can get stuck in a small region, leading to an increase in

the 2-norm or collision probability. It follows that the collision probability of a random walk

forms a measure for the expansion of the graph. The key insight is then that, by a refinement

of the birthday paradox, Θ(N1/2+µ) independent samples of the same random walk suffice

to estimate the collision probability to within a multiplicative factor 1 + O(N−2µ). As a

consequence, it is possible to estimate the 2-norm of a t-step random walk on an N -node

graph using Θ(N1/2+µtǫ−1) random walk steps.

The conjecture that Algorithm 3 is an expansion tester was later resolved as the conclusion

of a series of papers by Czumaj and Sohler [37], Kale and Seshadhri [38] and Nachmias and

Shapira [39], leading to the following theorem.

Theorem 4 ([39]) If d ≥ 3, then Algorithm 3 is a (Υ, ǫ, µ) expansion tester with runtime

O(N1/2+µΥ−2d2ǫ−1 logN).

In the following section we show that we can use QFF to accelerate this tester very naturally

by quantum simulating the random walks, and using quantum techniques to estimate the

2-norm.

3.2 Quantum Expansion Tester

It is possible to extend the classical query model to the quantum setting, a proper definition

of which can be found in [41, 23]. For this work it suffices to know that (i) we can generate

a uniformly random node as in the classical case, and (ii) we can implement a single step of

the quantum walk operator as defined in (4) using O(
√
d) queries to the graph, where d is

the maximum degree.

To accelerate the classical tester we will quantum simulate the random walks, and then

perform quantum amplitude estimation to estimate the 2-norm of the simulated random walks.

Together with the aforementioned amplitude amplification scheme, the amplitude estimation

scheme is described in the work by Brassard et al [34]. It is captured by the following lemma.

We note that in the original statement in [34] the number of reflections scales as 1/δ for a

success probability 1− δ. We use standard tricks to improve this to log(1/δ).

Lemma 5 (Quantum Amplitude Estimation) Consider a quantum state |ψ〉 and a gen-

eral projector Π♭. Give some δ > 0, there exists a quantum algorithm that outputs an estimate

a such that
∣∣‖Π♭ |ψ〉 ‖− a

∣∣ ≤ ǫ with probability at least 1− δ, using O(log(1/δ)ǫ−1) reflections

around |ψ〉 and around the image of Π♭.

Proof. We can use the quantum amplitude estimation algorithm from [34, Theorem 12]

to output an ǫ′ = ǫ/3-close estimate with success probability at least 5/6. This algorithm
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requires O(1/ǫ) reflections around |ψ〉 and around the image of Π♭. We can boost the success

probability to 1 − δ by running their algorithm T = ⌈18 ln δ−1⌉ times, which by Hoeffding’s

inequality implies that, with a probability at least 1 − δ, at least 2T/3 iterations have been

successful. Therefore, with probability 1−δ, it holds that (i) at least 2T/3 estimates lie in the

interval [‖Π♭ |ψ〉 ‖ − ǫ′, ‖Π♭ |ψ〉 ‖ + ǫ′], and therefore (ii) we can find a subset S of estimates,

|S| ≥ 2T/3, all of which lie in a 2ǫ′-interval. This subset must overlap with the interval

[‖Π♭ |ψ〉 ‖ − ǫ′, ‖Π♭ |ψ〉 ‖+ ǫ′].
If now we output any element of this subset S, we know that it lies in the interval

[‖Π♭ |ψ〉 ‖ − 3ǫ′, ‖Π♭ |ψ〉 ‖+ 3ǫ′]. This proves that with probability 1− δ we can output an es-

timate of ‖Π♭ |ψ〉 ‖ with precision 3ǫ′ = ǫ, using T runs of the quantum amplitude estimation

algorithm in [34], each of which requires O(1/ǫ) reflections around |ψ〉 and around the image

of Π♭. This proves the claimed statement. �

We will use this amplitude estimation algorithm to estimate the 2-norm of a random walk.

Thereto we recall the QFF scheme as discussed in Section 2.2.2. Note that the random walk

(9) proposed in the GR tester is symmetric, so that we can simply replace the discriminant

matrix D in the QFF algorithm by the random walk matrix P . Given a quantum state |s, ♭♭〉,
QFF applies an operator Wτ so that

Π♭Wτ |s, ♭♭〉 =
(

1

1− p>τ

τ∑

l=0

plTl(P ) |s〉
)
⊗ |♭♭〉 ≈ (P t |s〉)⊗ |♭♭〉 ,

as in (8), with the summation corresponding to the truncated Chebyshev expansion of P t.

Implementing this operator requires O(τ) QW steps and O(τ
√
d) queries to the graph. If

we set τ ∈ Θ
(√

t log(Nǫ−1)
)
(replacing ‖P t |s〉 ‖ by its lower bound N−1/2 in Algorithm 2)

then the 2-norm of 1
1−p>τ

∑τ
l=0 plTl(P ) |v〉 approximates the 2-norm of P t |v〉 to precision

O(ǫ). Applying quantum amplitude estimation on the state Wτ |v, ♭♭〉 and projector Π♭ will

therefore allow to estimate the 2-norm of P t |v〉, as was our initial goal. This scheme is easily

formalized in the below algorithm and theorem.

Algorithm 4 Quantum 2-norm Estimator

Input: parameters N and d; query access to N -node graph G with degree bound d; starting
vertex s; running time t; accuracy parameter ǫ; confidence parameter δ
Do:

1: set τ ∈ O(
√
t log(N/ǫ))

2: apply the QFF operator Wτ on the quantum state |s, ♭♭〉
3: use quantum amplitude estimation to create estimate a of ‖Π♭Wτ |s, ♭♭〉 ‖

to error ǫ/2 with probability 1− δ

Output: estimate a

Theorem 5 (Quantum 2-norm Estimator) With probability at least 1 − δ, Algorithm 4

outputs an estimate a such that
∣∣‖P t |s〉 ‖ − a

∣∣ ≤ ǫ. The algorithm requires a number of QW

steps bounded by O
(√

t
ǫ log 1

δ log
1/2 N

ǫ

)
.

Proof. We will prove the theorem for the algorithm parameter τ =
⌈√

2t ln
(
8
√
N/ǫ

)⌉
. By
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this choice, and the fact that ‖P t |s〉 ‖ ≥ N−1/2 on any N -node graph, we can deduce from

the proof of Theorem 2 that

∣∣‖Π♭Wτ |s〉 ‖ − ‖P t |s〉 ‖
∣∣ ≤ ǫ/2.

Applying quantum amplitude estimation on Π♭Wτ |s〉 with a precision ǫ/2 therefore leads to

an estimate of ‖P t |s〉 ‖ up to error ǫ. By Lemma 5 we can do so with a probability 1−δ using
O(ǫ−1 log δ−1) reflections around Wτ |s〉. We can implement a single such reflection using 2τ

QW steps, and a reflection around the initial state (which is a basis state and can hence be

neglected). �

We can compare this with the classical 2-norm tester proposed by Czumaj, Peng and

Sohler [24, Lemma 3.2], building on the GR tester. For δ = 1/3 their tester requires O(t/ǫ)

queries to the graph, whereas our algorithm only requires Õ(
√
t/ǫ) queries. We can now use

our quantum 2-norm tester to create a quantum tester for the graph expansion. The proof

makes use of some details from the classical proof of Nachmias and Shapira [39].

Algorithm 5 Quantum Graph Expansion Tester

Input: parameters N and d; query access to N -node graph G with degree bound d; expansion
parameter Υ; accuracy parameter ǫ; running time parameter µ < 1/4
Do:

1: set t ∈ O(d2Υ−2 logN), M ∈ O(N−1/2), ǫ′ ∈ O(N−1/2+µ), δ ∈ O(ǫ)
2: for T ∈ O(ǫ−1) times do
3: select a uniformly random starting node s
4: use Algorithm 4 to create estimate a of ‖P t |s〉 ‖ to precision ǫ′,

with probability 1− δ
5: if a > M + ǫ′, abort and output “reject”

Output: if no “reject”, output “accept”

Theorem 6 (Quantum Graph Expansion Tester) If d ≥ 3 then Algorithm 5 is a (Υ, ǫ, µ)

expansion tester. The runtime and number of queries of the algorithm are bounded by

O(N1/2+µd3/2Υ−1ǫ−1 log(ǫ−1) logN).

Proof. We will prove the theorem for the algorithm parameters t = 16d2Υ−2 logN , M =√
N−1(1 +N−1), ǫ′ = N−1/2+µ/(16

√
2), δ = ǫ/300 and T = 90/ǫ.

In each iteration the estimate a will be such that
∣∣a−‖P t |s〉 ‖

∣∣ ≤ ǫ′ with probability 1−δ,
and hence ∣∣a2 − ‖P t |s〉 ‖2

∣∣ =
∣∣(a− ‖P t |s〉 ‖)(a+ ‖P t |s〉 ‖)

∣∣ ≤ 2ǫ′.

Nachmias and Shapira [39] showed that if G has a conductance ≥ Υ, then for all nodes s it

holds that

‖P t |s〉 ‖ ≤M =
√
N−1(1 +N−1).

Given such a graph, in each iteration the estimate a ≤M + ǫ′ with probability 1− δ, so that

the probability of a faulty rejection is at most δ per iteration. The total probability of a faulty

rejection can then be bounded by Tδ < 1/3.
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In the negative case, [39] showed that there exists a constant c > 0 such that if G is ǫ-far

from any graph with max degree d and conductance ≥ cµΥ2, then there exist at least ǫN/128

vertices s for which it holds that

‖P t |s〉 ‖ ≥
√
N−1(1 + 32−1N−2µ).

Given such a graph, in each iteration the estimate a will now be such that a ≥ ‖P t |s〉 ‖− ǫ′ ≥√
N−1(1 + 32−1N−2µ)− ǫ′ with probability 1− δ. To show that this quantity > M + ǫ′, we

bound M =
√
N−1(1 +N−1) ≤ N−1/2(1+N−1/2) and

√
N−1(1 + 32−1N−2µ) ≥ N−1/2(1−

N−µ/(4
√
2)), which shows that

√
N−1(1 + 32−1N−2µ)−M ≥ N−1/2−µ/(4

√
2).

This proves that indeed

√
N−1(1 + 32−1N−2µ)− ǫ′ > M + ǫ′

for ǫ′ = N−1/2−µ/(16
√
2). As a consequence, a single iteration will correctly output a rejection

with probability (1 − δ)ǫN/128. The total probability of correctly rejecting at least once is

therefore lower bounded by T (1− δ)ǫ/128 ≥ 2/3. This concludes the proof that Algorithm 5

is a (Υ, ǫ, µ) graph expansion tester. The required number of QW steps is given by T times

the number required by the 2-norm tester, which by Theorem 5 is

O

(√
t

ǫ′
log

1

δ
log1/2

N

ǫ′

)
∈ O

((
dΥ−1 log1/2N

)
N1/2+µ log

1

ǫ
log1/2N1+µ

)
.

We can implement a single QW step using O(
√
d) graph queries, so that we find the claimed

bound. �

We recall that the classical GR tester has a runtime

O(N1/2+µd2Υ−2ǫ−1 logN).

Up to the log(ǫ−1)-factor we improve this runtime with a factor Υ−1, which basically follows

from the fact that we quadratically accelerate the random walk runtime to t ∈ Θ̃(Υ−1). There

exist bounded-degree graphs for which Υ ∈ Ω(1/N), so that in some cases we improve the

runtime by a factor Υ−1 ∈ Θ(N). Concerning the space complexity, we note that the classical

GR tester must store and compare the endpoints of Ω(N1/2) independent random walks. By

direct inspection we see that our algorithm only requires O(log(Nt log ǫ−1)) ∈ polylog(N)

qubits to implement, exponentially improving the space complexity. This is due to the fact

that our algorithm compares superpositions that encode the endpoint distribution of the

random walks, rather than an explicit list of samples.

We can now compare this result to the preceding work by Ambainis, Childs and Liu [23].

They used a very different approach to speed up the GR expansion tester, using quantum

walks only indirectly, which results in a runtime improvement of a different nature. In rough

strokes they speed up the classical 2-norm tester by making use of Ambainis’ quantum walk

algorithm for element distinctness [1] to count collisions between pairs of classical random

walks more efficiently. This allows them to improve the runtime of the 2-norm tester to
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Õ(N1/3+µt), which provides a speedup complementary to the speedup of our 2-norm tester

which in this context has a runtime Õ(N1/2+µ
√
t). Using this 2-norm tester in the above

Algorithm 5 leads to a runtime

Õ(N1/3+µd2Υ−2ǫ−1).

The space complexity of this approach is comparable to the GR tester: the algorithm for

element distinctness over the
√
N random walk endpoints requires to store N1/3 elements.

We leave it as future work to combine the Θ̃(N1/6) gain in collision counting of [23] with our

Θ̃(dΥ−1) gain in random walk runtime and our logarithmic space complexity.

We note that a property tester in the same spirit as the GR expansion tester was proposed

by Batu et al [42] for testing the mixing time of general Markov chains on a graph. For the

special case of symmetric Markov chains it seems feasible that we can speed up their algorithm

using the same ideas, yielding a similar speedup on the random walk runtime.

3.3 Clusterability and Robust s-t Connectivity

We can similarly use QFF to speed up a more recent line of algorithms on testing the clus-

terability of a graph [24, 25]. In clusterability testing the goal is to test whether a graph can

be appropriately clustered into k parts for some given k. The proposed algorithms build on

a subroutine of independent interest, which allows to determine whether a pair of nodes lie

in the same cluster or not. This leads to a robust notion of s-t connectivity, useful e.g. for

classifying objects among a set of examples and relevant also outside of the setting of property

testing. We show that QFF allows to speed up this subroutine, leading to a speedup on the

clusterability testers that use this subroutine.

The observation underlying the clusterability testers in [24, 25] is that the GR technique

of counting collision can also be used to estimate the inproduct of any two given distributions

p and q, defined by

〈p, q〉 =
∑

j

p(j)q(j).

Indeed, this quantity is equal to the collision probability between the two distributions. The

estimate on the inproduct of the inproduct is then used to estimate the 2-distance ‖p − q‖
between a pair of random walks, which will be small if both random walks started in the same

cluster, and large otherwise. This approach of estimating the distance between distributions

was further developed in the work by Batu et al [42], Valiant [26] and Chan et al [43]. We will

focus our efforts on showing how QFF allows to speed up this routine of independent interest,

following up with an informal discussion of how this leads to a speedup on the clusterability

tester of Czumaj et al [24].

2-distance Estimator

To estimate the 2-distance of a pair of random walks, we will combine QFF with the SWAP

test: given two quantum states |ψ〉 and |φ〉 and an ancillary qubit in the state |0〉, yielding
the state |0〉 |ψ〉 |φ〉, we apply the following operations:

|0〉 |ψ〉 |φ〉 H⊗I⊗I→ |0〉+|1〉√
2

|ψ〉 |φ〉
cS→ 1√

2
|0〉 |ψ〉 |φ〉 + 1√

2
|1〉 |φ〉 |ψ〉

H⊗I⊗I→ 1
2 |0〉 (|ψ〉 |φ〉+ |φ〉 |ψ〉) + 1

2 |1〉 (|ψ〉 |φ〉 − |φ〉 |ψ〉),
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where we used the Hadamard gate H = 1√
2

[
1 1
1 −1

]
, and the conditional swap operation cS

swapping the second and third registers conditional on the first register being in the state |1〉.
We will call the combined unitary operation USWAP = (H ⊗ I ⊗ I)cS(H ⊗ I ⊗ I). We can

now either measure the first register, or apply quantum amplitude estimation to the projector

Π1 = |1〉 〈1| ⊗ I ⊗ I, to estimate the quantity

‖ |ψ〉 |φ〉 − |φ〉 |ψ〉 ‖2 = 2(1− | 〈ψ|φ〉 |2).

This quantity will be small if |ψ〉 and |φ〉 are close and large otherwise, allowing to estimate

the distance between the input states |ψ〉 and |φ′〉. We can combine the SWAP test with

our QFF algorithm, and the 2-norm estimator in previous section, to obtain a tester for the

2-distance. Due to the straightforward yet technical nature of the details of the tester, we

defer its description to Appendix A.

Theorem 7 (Quantum 2-distance Estimator) With probability at least 1− δ, Algorithm

6 outputs an estimate a such that

∣∣‖P t |u〉 − P t |v〉 ‖2 − a
∣∣ ≤ ǫ.

For a = max{‖P t |u〉 ‖, ‖P t |v〉 ‖} and a = min{‖P t |u〉 ‖, ‖P t |v〉 ‖}, the algorithm requires an

expected number of QW steps bounded by

O

(√
t

(
a

ǫ
+

a4

aǫ2

)
log

logN

δ
log3/2

N

ǫ

)
.

For comparison, the classical estimator presented in Czumaj et al [24, Theorem 3.1] requires a

number of graph queries or random walk steps O
(
taǫ log

1
δ

)
. Chan et al [43] give an information

theoretical proof that classically Ω(a/ǫ) samples are needed to estimate the 2-distance between

a pair of distributions.

Classifying Nodes

Czumaj et al [24] use their classical 2-distance estimator to propose a property tester for the

clusterability of a graph. Following for instance Oveis Gharan and Trevisan [44], they say that

a graph G is (k,Φin,Φout)-clusterable if and only if there exists a partition V = S1 ∪ · · · ∪ Sh,
h ≤ k, such that the clusters are well-connected internally, Φ(G[Sj ]) ≥ Φin, and poorly-

connected externally, Φ(Sj) ≤ Φout. Here G[Sj ] denotes the graph consisting of the nodes in

Sj and the edges between these nodes, the conductance Φ(Sj) is defined as

Φ(Sj) =
|E(Sj ,Scj )|
d|Sj |

,

and the conductance Φ(G′) of a graph G′ = (V ′, E ′) is

Φ(G′) = min
T ⊂V′,|T |≤|V′|/2

|E(T ,V ′\T )|
d|T | .

It turns out that graph clusterability can be efficiently tested when the gap between Φin and

Φout is sufficiently large - typically quadratic, Φout ∈ Õ(Φ2
in).
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Czumaj et al [24] construct such a clusterability tester using a subroutine for classifying

nodes, i.e., determining whether two nodes lie in the same cluster or not. As mentioned

before, it is possible to classify nodes by comparing random walks starting from the nodes:

the 2-distance between random walks starting from nodes of the same cluster will typically

be smaller than the 2-distance between nodes from different clusters. This is formalized

below in Lemma 6, which we extract from Czumaj et al [24, Lemma 4.1 and 4.3]. Given an

appriopriately clusterable graph, having a gap Φout ∈ O(Φ2
in/ logN), it gives bounds on the

2-distance between pairs of nodes coming from the same or different clusters. The lemma is

confined to the internal nodes S̃ ⊆ S of a cluster S, similar to most work on locally exploring

graph clusters, see for instance the work of Spielman and Teng [45].

Lemma 6 ([24]) Consider a (k,Φin,Φout)-clusterable graph with degree bound d, and let S
and S ′ be clusters of such a partition. Assume that

Φout ≤ cΦ2
in/ logN,

with c some constant dependent on d, k, |S|/N and |S ′|/N . Then there exist subsets S̃ ⊆ S,
|S̃| ≥ |S|/2, and S̃ ′ ⊆ S ′, |S̃ ′| ≥ |S ′|/2, and a universal constant c′, such that for t =

⌈c′k4Φ−2
in logN⌉ it holds that

• if two nodes u, v ∈ S̃ or u, v ∈ S̃ ′, then ‖P t |u〉 − P t |v〉 ‖2 ≤ 1/(4N).

• if two nodes u ∈ S̃ and v ∈ S̃ ′, then ‖P t |u〉 − P t |v〉 ‖2 ≥ 1/N .

We can combine this lemma with our quantum 2-distance estimator to prove the below propo-

sition. It speeds up the routine which lies at the basis of the property tester in [24], which

essentially solves a robust version of s-t connectivity. Arguably the latter is more relevant

to e.g. social networks, where mere connectivity between two nodes is no longer deemed an

interesting quantity, yet the community or cluster structure does hold important information.

Proposition 3 (Classifying Nodes) • Under the clusterability conditions of Lemma 6,

we can use the quantum 2-distance estimator to determine with probability at least 2/3

whether two internal nodes lie in the same cluster or not.

• There exists a subset Ṽ ⊆ V, |Ṽ | ≥ 9|V|/10, such that if in addition both nodes lie in Ṽ,
then the algorithm requires O(N1/2k4Φ−1

in log3/2N) expected QW steps.

Proof. To prove the first bullet, it suffices to use Lemma 6 which states that if both lie in

the same cluster, then ‖P t |u〉 − P t |v〉 ‖2 ≤ 1/(4N), whereas if both lie in different clusters,

then ‖P t |u〉 − P t |v〉 ‖2 ≥ 1/N . By Theorem 7 we can estimate ‖P t |u〉 − P t |v〉 ‖2 to error

ǫ = 1/N , which allows to distinguish both cases.

To prove the second bullet, let Ṽ denote a set of nodes u for which ‖P t |u〉 ‖ ∈ O(k/N),

which by [24, Lemma 4.2] we know we can choose of size at least 9|V|/10. If both nodes

lie in Ṽ , then in Theorem 7 we can set a ∈ O(k/N), and a ∈ O(1/N) since necessarily

‖P t |u〉 ‖ ≥ 1/N for any node u. In this case, the expected number of QW steps becomes

O(
√
tN log3/2N). For t as in Lemma 6, this proves the second bullet. �

We can compare the runtime in the second bullet by the runtime when using classical colli-

sion counting, which requires a number of RW steps Õ(N1/2k4Φ−2
in ). Applying the element
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distinctness technique by Ambainis et al [23] requires a number of QW steps Õ(N1/3k4Φ−2
in ).

Again we also find an improvement in space complexity with respect to these alternative

approaches: our algorithm only requires polylog(N) qubits, whereas the other approaches

require poly(N) classical or quantum bits.

Lemma 6, combined with a classifier as in Proposition 3, forms the basis of the graph

clusterability tester proposed by [24]. Since the tester is in the same vein as the GR expansion

tester, we will not state it explicitly but merely summarize the idea. The algorithm selects

a uniformly random set of Θ(k log k) nodes over which it constructs a similarity graph by

adding an edge between any pair of nodes if their random walk probabilities are closer than

some threshold. This similarity graph serves as a graph sketch, reminiscent of the recent

surge of results on graph sketching and sparsification [46]. They then prove that if the graph

is appropriately clusterable in at most k components, then with high probability this small

similarity graph will have at most k connected components, which they then check by brute

force. Using the classical 2-distance estimator to estimate the distance between random walk

distributions, this leads to a clusterability tester requiring Õ
(
N1/2k7Φ−2

in ǫ
−5

)
RW steps. We

can improve this to Õ
(
N1/2k7Φ−1

in ǫ
−4

)
QW steps using Proposition 3. It seems feasible that

using the element distinctness technique in [33] an alternative speedup to Õ
(
N1/3k7Φ−2

in ǫ
−5

)

RW steps can be achieved.

4 Discussion and Open Questions

We introduced a new quantum walk tool called quantum fast-forwarding (QFF), allowing

to quantum simulate classical reversible Markov chains with a quadratically improved time

dependency. The main benefit of this tool is that it allows to effectively simulate the tran-

sient dynamics of the Markov chains. We can contrast this to many existing quantum walk

algorithms which rely on a speedup of the Markov chain limit behavior. This new feature is

crucial for the applications in graph property testing and node classification that we discuss.

Indeed we show that QFF allows to speed up in a very natural way random walk algorithms

for testing graph properties such as expansion and clusterability, both of which decisively

depend on the transient dynamics of a random walk.

To finalize we mention some avenues for future work:

• Improving the QFF scheme: parameter dependence and irreversible Markov chains.

QFF allows to create an ǫ-approximation of the state |Dtv〉 with constant success prob-

ability using a number of QW steps

O

( √
t

‖Dt |v〉 ‖ log1/2
1

ǫ‖Dt |v〉 ‖

)

and O(‖Dt |v〉 ‖−1) reflections around the initial state |v〉. It is easy to see that the

individual t and ǫ dependency are optimal by looking at the random walk on Z. If we

tolerate an ǫ error, then we can confine the probability distribution of a t-step random

walk to the Θ
(
t1/2 log1/2 ǫ−1

)
neighborhood of the initial state. Since the QW has the

same locality constraints as the RW, it needs Ω
(
t1/2 log1/2 ǫ−1

)
QW steps to spread

out over this interval. A very similar argument also shows why in general QFF cannot

create the state |P tv〉 (rather than |Dtv〉) when P is irreversible. Indeed, consider the
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Markov chain on Z which simply moves to the right every step, P (i + 1, i) = 1 and

P (i−1, i) = 0. This walk is clearly not reversible, as the direction of its motion reverses

when running the time forward or backward. When starting in the origin, the walk will

be on node t after t steps. A local QW requires Ω(t) steps to reach this point, so that

no fast-forwarding is possible.

We leave improvements of the dependency on ‖Dt |v〉 ‖ as an open question.

• Local Graph Clustering and Sparsification. Local graph clustering algorithms, as in

[45, 47], aim to explicitly construct a local cluster, rather than merely test whether

appropriate clusters exist. They have a similar flavor to the graph expansion tester that

we discussed, making use of random walks and other diffusive dynamics as a way of

locally exploring a graph. It might be possible to use QFF or similar ideas as a way

of speeding up these algorithms. Since these algorithms formed the root of a number

of approaches towards graph sparsification and solving symmetric diagonally-dominant

linear systems, this might lead to speedups on these highly relevant problems as well.

• Hamiltonian QFF. Following for instance Childs [48], we can associate a QW to a general

Hermitian matrix, representing for instance a Hamiltonian rather than a Markov chain.

We leave it as an open question whether this can lead to interesting applications in for

instance imaginary time evolution [49] or an improved implementation of functions of a

Hamiltonian [50].
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A Quantum 2-distance Estimator: Algorithm and Proof

In this appendix we present the algorithm and proof underlying Theorem 7, which concerns the

estimation of the distance between two random walk distributions p = P t |u〉 and q = P t |v〉.
To construct our algorithm, we rewrite

‖p− q‖2 = ‖p‖2 + ‖q‖2 − 2‖p‖‖q‖ 〈p|q〉 ,

using the notation 〈p|q〉 = 〈p, q〉 /(‖p‖‖q‖). As a consequence, we can retrieve an estimate by

separately estimating ‖p‖, ‖q‖ and 〈p|q〉. Towards estimating ‖p‖ and ‖q‖, we present at the

end of this appendix a simple extension of the quantum 2-norm tester presented earlier in

Section 3.2 that allows to estimate the 2-norm up to multiplicative error, instead of additive

error. Towards estimating 〈p|q〉, we first create approximations of |p〉 = p/‖p‖ and |q〉 = q/‖q‖,
on which we subsequently apply the SWAP test and amplitude estimation. A subtlety is that

we cannot simply use our QFF algorithm to create |p〉 and |q〉 with high probability. Indeed,

in order to apply amplitude estimation for the SWAP test we must reflect around these states,

and it is not clear that we can reflect around the output of the QFF algorithm. Instead, we will

apply the unitary amplitude amplification operator to the states Wτ |u, ♭♭〉 and Wτ |v, ♭♭〉 to
unitarily rotate these states close to |p〉 and |q〉, omitting the final measurement in Algorithm

2. This invertible operation will allow to reflect around the output states. Furthermore,

instead of the amplitude amplification operator used in Section 2.2.2, we will make use of an

enhanced operator by Yoder and Low [51]. This operator, as described in the below lemma,

is better suited for the case where we only have a lower bound on the success probability.

Lemma 7 (Fixed Point Amplitude Amplification [51]) Consider a state |ψ〉 and a pro-

jector Π♭ such that ‖Π♭ |ψ〉 ‖ = λ > 0. For any constant δ > 0, there exists a family of unitary

transformations UL such that if L ≥ λ−1 log(2/δ) then

| 〈ψ♭|UL|ψ〉 |2 ≥ 1− δ2,

where ψ♭ = Π♭ |ψ〉 /‖Π♭ |ψ〉 ‖. We can implement UL using O(L) reflections around |ψ〉 and

around the image of Π♭.

Using the appropriate operator UL, we can therefore retrieve approximations |ψu〉 =

ULWτ |u, ♭♭〉 ≈ |p〉 and |ψv〉 = ULWτ |v, ♭♭〉 ≈ |q〉. We can now apply the SWAP test to

these states, combined with amplitude amplification, to retrieve an estimation of 〈p|q〉. To

see this, note that

Π1(USWAP |0〉 |ψu〉 |ψv〉) =
1

2
|1〉 (|ψu〉 |ψv〉 − |ψv〉 |ψu〉).

As a consequence we can apply quantum amplitude estimation on the state USWAP |0〉 |ψu〉 |ψv〉
with respect to the projector Π1 to estimate the quantity

1

2

∥∥ |ψu〉 |ψv〉 − |ψv〉 |ψu〉
∥∥2 = 1− | 〈ψu|ψv〉 |2 ≈ 1− | 〈p|q〉 |2.

Combined with the former estimates of ‖p‖ and ‖q‖ this leads to an estimate of the 2-distance

we were looking for. We formalize this in the following algorithm and theorem.
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Algorithm 6 Quantum 2-distance Estimator

Input: parameters N and d; query access to N -node graph G with degree bound d; starting
vertices u and v; running time t; accuracy parameter ǫ; confidence parameter δ
Do:

1: use Algorithm 7 to create estimates α and β of ‖P t |u〉 ‖ resp. ‖P t |v〉 ‖
to multiplicative error 1/4, with probability 1− δ/4

2: set µ ∈ O(ǫmax(α, β)−2)
3: use Algorithm 7 to create new estimates α and β of ‖P t |u〉 ‖ resp. ‖P t |v〉 ‖

to multiplicative error µ, with probability 1− δ/4
4: set L ∈ Ω(min(α, β)−1 logmin(α, β)−1) and τ ∈ Ω(

√
t ln(N/µ))

5: apply Wτ , UL and USWAP to create the state

|ψ〉 = USWAP |0〉
(
ULWτ |u, ♭♭〉

)(
ULWτ |v, ♭♭〉

)

6: use amplitude estimation to create an estimate γ of ‖Π1 |ψ〉 ‖ to error µ,
with probability 1− δ/2

Output: estimate a = α2 + β2 − 2αβ
√
1− γ2/2

Theorem 8 (Quantum 2-distance Estimator) With probability at least 1− δ, Algorithm

6 outputs an estimate a such that

∣∣‖P t |u〉 − P t |v〉 ‖2 − a
∣∣ ≤ ǫ.

With a = max{‖P t |u〉 ‖, ‖P t |v〉 ‖} and a = min{‖P t |u〉 ‖, ‖P t |v〉 ‖}, the algorithm requires

an expected number of QW steps bounded by

O

(√
t

(
a

ǫ
+

a4

aǫ2

)
log

logN

δ
log3/2

N

ǫ

)
.

Proof. We prove the theorem for

µ =
1

26
min

(
1,

9ǫ

16max(α, β)2

)
, L =

⌈ 1
λ
log

2

ν

⌉
, τ =

⌈√
2t ln1/2

4

λν

⌉
,

with λ = min(α, β)/(1+ν) and ν = µ2/11. We will denote p = P t |u〉, q = P t |v〉, |p〉 = p/‖p‖,
|q〉 = q/‖q‖, a2 = max(‖p‖, ‖q‖) and a = min(‖p‖, ‖q‖). The algorithm estimates the quantity

‖p− q‖2 = ‖p‖2 + ‖q‖2 − 2‖p‖‖q‖ 〈p|q〉 by separately estimating ‖p‖, ‖q‖ and 〈p|q〉 to error

O(ǫ/a2).

After the first step, we retrieve with probability at least 1 − δ/4 estimates α and β such

that
3

4
‖p‖ ≤ α ≤ 5

4
‖p‖, 3

4
‖q‖ ≤ β ≤ 5

4
‖q‖.

This proves that the parameter

µ =
1

26
min

(
1,

ǫ

(4max(α, β)/3)2

)
≤ 1

26
min

(
1,

ǫ

a2

)
, (10)

and µ ∈ Θ(min(1, ǫ/a2)). In step 3 we then create new estimates of ‖p‖ and ‖q‖ to multi-

plicative error µ. The combined success probability of both steps is (1 − δ/4)2 ≥ 1 − δ/2.
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Following Theorem 9 these steps require an expected number of QW steps in

O

(√
ta

ǫ
log

logN

δ
log1/2

N

ǫ

)
.

In the following steps of the algorithm we estimate 〈p|q〉 = 〈p,q〉
‖p‖‖q‖ to additive error µ by

combining QFF, amplitude amplification, the SWAP test and amplitude estimation. Thereto

we first rewrite

〈p|q〉 =
√
1− ‖ |p〉 |q〉 − |q〉 |p〉 ‖2

2
,

showing that we can use an estimate on ‖ |p〉 |q〉 − |q〉 |p〉 ‖ to estimate 〈p|q〉. Indeed, it is

easily seen from a function plot that if we create an estimate κ ∈ [0,
√
2] such that

∣∣‖ |p〉 |q〉 −
|q〉 |p〉 ‖ − κ

∣∣ ≤ µ2, then the estimate
√
1− κ2/2 will be µ-close:

∣∣∣
√
1− κ2/2− 〈p|q〉

∣∣∣ ≤ µ. (11)

We now create an estimate of ‖ |p〉 |q〉− |q〉 |p〉 ‖. By Lemma 7 and Theorem 3, and our choice

of L and τ , it holds that

‖ULWτ |u, ♭♭〉 − |p, ♭♭〉 ‖ ≤ (1− ν2)‖Wτ |u, ♭♭〉 /‖Wτ |u, ♭♭〉 ‖ − |p, ♭♭〉 ‖+ ν

≤ (1− ν2)ν + ν ≤ 2ν,

with ν = µ2/11, and similarly for ULWτ |v, ♭♭〉. If we set |ψu〉 = ULWτ |u, ♭♭〉 and |ψv〉 =

ULWτ |v, ♭♭〉, then this implies that

∣∣‖ |ψu〉 |ψv〉 − |ψv〉 |ψu〉 ‖ − ‖ |p〉 |q〉 − |q〉 |p〉 ‖
∣∣ ≤ 8ν(1 + 2ν).

Now we can apply amplitude estimation, as in Lemma 5, to the state USWAP |0〉 |ψu〉 |ψv〉
and projector Π1 with success probability 1 − δ/2 and error ν. If successful this returns an

estimate γ of ‖ |ψu〉 |ψv〉 − |ψv〉 |ψu〉 ‖ to error ν. Combined with the above inequality this

shows that ∣∣‖ |p〉 |q〉 − |q〉 |p〉 ‖ − γ
∣∣ ≤ ν + 8ν(1 + 2ν) ≤ µ2.

By (11) this leads to the promised bound
∣∣√1− γ2/2− 〈p|q〉

∣∣ ≤ µ.

Implementing Wτ , UL and USWAP requires a number of QW steps O(τ) +O(L), bounded

by

O

(√
t

a
log

a

ǫa
log1/2

Na

ǫ

)
.

Applying amplitude estimation with success probability 1 − δ/2 and error ν ∈ Θ(ǫ2/a4)

requires O
(
a4

ǫ2 log 1
δ

)
reflections around the state USWAP |0〉 |ψu〉 |ψv〉. We can implement each

such reflection using the same number of QW steps required to implement the operators Wτ ,

UL and USWAP. This leads to a total number of QW steps bounded by

O

(√
ta4

aǫ2
log

1

δ
log

a

ǫa
log1/2

Na

ǫ

)
.
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Combined with the first approximation part, we find estimates α, β and γ such that

|α − ‖p‖| ≤ µ‖p‖, |β − ‖q‖| ≤ µ‖q‖ and |γ − 〈p|q〉 | ≤ µ. This allows to prove the claimed

error of the estimate

∣∣α2 + β2 − 2αβγ − ‖p− q‖2
∣∣ ≤ µ(2 + µ)(‖p‖2 + ‖q‖2)

+ 2‖p‖‖q‖
[
µ(2 + µ)(〈p|q〉+ µ) + (1 + µ)2µ

]

≤ 3µ(‖p‖2 + ‖q‖2) + 20µ‖p‖‖q‖
≤ 26µmax(‖p‖, ‖q‖)2 ≤ ǫ,

using the bound (10). The total success probability can be bounded by (1 − δ/2)2 ≥ 1 − δ,

and the expected number of QW steps by

O

(√
t

(
a

ǫ
+

a4

aǫ2

)
log

logN

δ
log3/2

N

ǫ

)
.

�

2-norm Estimator to Multiplicative Error

In the above estimator for the 2-distance we wish to estimate ‖P t |u〉 ‖ to some multiplicative

error ǫ, without having a bound on ‖P t |u〉 ‖. We present such an estimator in the below

algorithm and theorem.

Algorithm 7 Quantum Multiplicative 2-norm Estimator

Input: parameters N and d; query access to N -node graph G with degree bound d; starting
vertex u; running time t; accuracy parameter ǫ; confidence parameter δ
Do:

1: for k = 1 . . . T ∈ O(logN) do
2: use Algorithm 4 to create estimate α of ‖P t |u〉 ‖ to error ǫk = ǫ2−k−2,

with probability 1− δ′ for δ′ ∈ O(δ log−1N)
3: if α ≥ (1 + ǫ)2−k, abort for-loop

Output: α

Theorem 9 (Quantum Multiplicative 2-norm Estimator) With probability at least 1−
δ, Algorithm 6 outputs an estimate α such that

∣∣‖P t |u〉 ‖ − α
∣∣ ≤ ǫ‖P t |u〉 ‖.

The algorithm requires an expected number of QW steps bounded by

O

( √
t

ǫ‖p‖ log
logN

δ
log1/2

N

ǫ

)
.

Proof. We will prove the theorem for T = ⌈ 1
2 logN⌉ and δ′ = δ/T . We do so by showing

that with probability at least 1− δ the loop aborts such that the value of α forms an estimate

of ‖p‖ to multiplicative error ǫ, where we denote p = P t |u〉. We first assume that every call
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to Algorithm 4 is successful, the probability of which we will bound afterwards. Let ak be

the value of α in the k-th iteration, so that |‖p‖ − ak| ≤ ǫk. If the loop is stopped at the

k-th iteration then ak ≥ (1 + ǫ)2−k or equivalently ǫk ≤ ǫ
1+ǫak. Combined with the fact that

ak ≤ ‖p‖+ ǫk this shows that ǫk ≤ ǫ
1+ǫ (‖p‖ + ǫk) or equivalently ǫk ≤ ǫ‖p‖, so that we find

an estimate with multiplicative error ǫ.

If the first
⌈
log ‖p‖−1

⌉
calls to the 2-norm estimator are successful, then the algorithm

stops and outputs a correct estimate. We can bound this number of calls by T =
⌈
1
2 logN

⌉

using the fact that ‖p‖ ≥ N−1/2. The probability that this happens, i.e., that none of the first⌈
log ‖p‖−1

⌉
implementations of the 2-norm tester fails, is at least 1−

⌈
log ‖p‖−1

⌉
δ′ ≥ 1 − δ

if we set δ′ = δ/T . This proves the success probability of the algorithm.

To bound the runtime, we first note that the k-th iteration runs the 2-norm tester with

error ǫk = ǫ2−k and success probability 1− δ′, which by Theorem 5 requires a number of QW

steps

O

(
2k
√
t

ǫ
log

logN

δ
log1/2

2kN

ǫ

)
.

Now we bound the expected number of iterations. If the algorithm succeeds, then it aborts

after
⌈
log ‖p‖−1

⌉
iterations. If this does not happen, then either it aborts earlier, resulting in

a number of iterations smaller than
⌈
log ‖p‖−1

⌉
, or it aborts later. However, after

⌈
log ‖p‖−1

⌉

iterations, any successful call to the 2-norm tester will abort the algorithm, which happens

per iteration with probability at least 1 − δ. In such case the expected number of iterations

can be bounded by (1 − δ)−1 ≤ 2 under the assumption that δ ≤ 1/2. In any case we

see that the expected number of iterations is O(log ‖p‖−1). Now we can use the fact that∑b
k=0 2

k log1/2 2k ∈ O(2b
√
b) ∈ O(‖p‖−1 log1/2 ‖p‖) for b ∈ O(log ‖p‖−1) to bound the total

expected number of QW steps by

O

( √
t

ǫ‖p‖ log
logN

δ
log1/2

N

ǫ

)
.

This finalizes the proof. �
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