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1 Introduction

We will show that An is simple for n ≥ 5. A group is simple when it is nontrivial and there are
no normal subgroups besides the trivial group and the group itself. To say n must be greater than
5, we first must look at A1 through A4. We know A1 and A2 are trivial and therefore not simple
groups. Next, A3 is simple because it has order 3, but A4 has a normal subgroup, {(1), (1 2)(3 4), (1
3)(2 4), (1 4)(2 3)}, and as a result is not a simple group.

This proof was written by Évariste Galois in the early 1800’s. The motivation for Galois to write
this proof was to explain the insolvability of quintic functions. This proof has become a fundamental
part of group theory. It was Camille Jordan that officially published the proof in his book, “Traité
des substitutions et des équations algébriques” [?]. Many other mathematicians, such as Leonard
Dickson, made advancements in understanding simple groups based on this proof [2].

We will prove that An is simple for n ≥ 5 by first proving five lemmas, then the theorem.

2 Preliminary Lemmas

Lemma 1. For n ≥ 3, An is generated by 3-cycles.

Proof. The identity e = (1) = (1 2 3)(1 3 2) is a product of 3-cycles. Let σ be a non identity element
in An, σ = τ1τ2...τr where σ is a product of transpositions.

We know that sign(σ) = 1 and sign(τ1τ2...τr) = (−1)r, thus r must be even.

Now, write the right side as successive transpositions, τiτi+1, where i is odd. Now, we will look at
each case of transposition products in Sn:

Case 1: τi and τi+1 are equal.

We see that τiτi+1 = (1) = (123)(132). Therefore, τiτi+1 is the product of two 3-cycles.
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Case 2: τi and τi+1 have exactly one element in common.

Let the common element be a, so let τi = (ab) and τi+1 = (ac) where b ̸= c. From this we have
τiτi+1 = (ab)(ac) = (acb) = (abc)(abc). Therefore, τiτi+1 is the product of two 3-cycles.

Case 3: τi and τi+1 are disjoint.

Let τi = (ab) and τi+1 = (cd). Then τiτi+1 = (ab)(cd) = (ab)(bc)(bc)(cd) = (bca)(cdb) = (abc)(bcd).
Therefore, τiτi+1 is the product of two 3-cycles.

Lemma 1.1. Conjugacy is an equivalence relation.

Proof. Let g1, g2, g3, x1, x2 ∈ G be arbitrary.

g1 = eg1e
−1, so conjugacy is reflexive.

If g1 = x1g2x
−1
1 , then g2 = x−1

1 g1(x
−1
1 )−1, so conjugacy is symmetric.

If g1 = x1g2x
−1
1 and g2 = x2g3x

−1
2 , then g1 = x1(x2g3x

−1
2 )x−1

1 = (x1x2)g3(x1x2)
−1, so conjugacy is

transitive.

Being reflexive, symmetric, and transitive, conjugacy is an equivalence relation.

Lemma 1.2. For n ≥ 5, all 3-cycles in An are conjugate in An.

Proof. Given a 3-cycle (abc),

(123) = (1a)(2b)(3c)(abc)(3c)(2b)(1a) = ((1a)(2b)(3c))(abc)((1a)(2b)(3c))−1.

If (1a)(2b)(3c) is in An, (abc) and (123) are conjugate in An. Otherwise,

(123) = (45)(123)(45)

= (45)((1a)(2b)(3c))(abc)((1a)(2b)(3c))−1(45)

= ((45)(1a)(2b)(3c))(abc)((45)(1a)(2b)(3c))−1

so (abc) and (123) are conjugate in An. In either case, we find all 3-cycles are conjugate in An to
(123) and thus to each other.

Lemma 1.3. For n ≥ 5, the conjugate of all 3-cycles in An are 3-cycles.

Proof. Consider τ, σ ∈ An, where τ is a 3-cycle (abc). Given x ∈ {a, b, c},

στσ−1(σ(x)) = σ(τ(x)).

Thus σ contains the cycle (σ(a)σ(b)σ(c)). It remains to show that elements of
{1, 2, ..., n} \ {σ(a), σ(b), σ(c)} remain fixed under στσ−1. Consider such an element n. σ is bijective
and σ−1({σ(a), σ(b), σ(c)}) = {a, b, c}, so σ−1(n) ̸∈ {a, b, c}. Thus τ fixes σ−1(n) and στσ−1(n) =
σσ−1(n) = n, completing the proof.

Lemma 2. A5 and A6 are simple.

Proof. If N is a normal subgroup of An, the conjugacy classes in An contained in N partition N since
conjugacy is an equivalence relation and given σ ∈ N , σ ∈ {πσπ−1 | π ∈ An} ⊆ N . The conjugacy
classes of A5 and A6 are given in Table 1 and Table 2, respectively.
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Table 1: A5 Conjugacy Classes
Representative e (12345) (21345) (12)(34) (123)

Order 1 12 12 15 20

Table 2: A6 Conjugacy Classes
Representative e (123) (123)(456) (12)(34) (12345) (23456) (1234)(56)

Order 1 40 40 45 72 72 90

By Lagrange’s theorem, any subgroup of A5 or A6 must have an order dividing 60 or 360 respec-
tively. However, if N is a normal subgroup of A5 or A6, its order must be the sum of distinct entries
including 1 (since N contains e) in the corresponding tables. However, the only such orders possible
are 1 and 60, so N must be either trivial or non-proper. Thus A5 and A6 are simple.

3 An is simple for n > 6

Proof. Suppose N ⊴ An be a non-trivial subgroup for n > 6. Let σ be a non-identity element of N ,
i.e., σ(l) ̸= l for some l ∈ {1, 2, · · · , n}. Let τ = (i j k) where i, j, k ̸= l and σ(l) ∈ {i, j, k}. Then,

τστ−1(l) = τ(σ(l)) ̸= σ(l)

∴ τστ−1 ̸= σ
(1)

Let µ = τστ−1σ−1 then µ ̸= (1) since τστ−1 ̸= σ. Also, τστ−1 ∈ N since τ ∈ An and σ ∈ N ⊴ An.

σ, τστ−1 ∈ N =⇒ µ = (τστ−1)σ−1 ∈ N (2)

Now,

µ = τστ−1σ−1 = τ(στ−1σ−1) (3)

Using lemma 1.3

τ−1 is a 3-cycle =⇒ −στ−1σ−1 is also a 3-cycle (4)

That means, µ = τ(στ−1σ−1) ∈ N is a product of two 3-cycles. Therefore, µ permutes at most 6
numbers in {1, · · · , n}. Let H be the copy of A6 inside An corresponding to the even permutations
of these 6 numbers (augmented to 6 numbers arbitrarily if µ permutes fewer than 6 numbers), i.e.,
H ∼= A6. Since µ is a product of two 3-cycles, it is an even permutation on these 6 numbers.
Therefore,

µ ∈ H and µ ∈ N and µ ̸= (1)

∴ µ ∈ N ∩H =⇒ N ∩H is non-trivial
(5)

Now, given N ⊴An we have gng−1 ∈ N for all g ∈ An, n ∈ N . For any h ∈ H ≤ An and n ∈ N ∩H,

h ∈ An and n ∈ N and N ⊴ An

∴ hnh−1 ∈ N (6)

h−1 ∈ H and n ∈ H

∴ hnh−1 ∈ H (7)

From equations 6 and 7, hnh−1 ∈ N ∩H for all h ∈ H, n ∈ N ∩H

∴ N ∩H ⊴H (8)

Therefore, from equations 5 and 8, N ∩ H is non-trivial and N ∩ H ⊴ H. Since H ∼= A6 that is
simple from the lemma 2, and therefore only contains the normal subgroups (1) and H. Therefore,
N ∩H ∈ {(1), H}, and given that N ∩H is nontrivial, N ∩H = H, and hence H ⊆ N .
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A6 contains all the even permutations of our 6 numbers and any 3-cycle is an even permutation.
Therefore, A6 contains 3-cycles. Then,

H ∼= A6 =⇒ H contains 3-cycles (9)

∴ H ⊆ N =⇒ N contains 3-cycles (10)

i.e., each non-trivial subgroup N ⊴ An contains a 3-cycle. Then, by lemma 1.3, N contains all 3-
cycles. That means, using lemma 1, N contains all elements that generate An. Since N ⊴ An, N
must contain all the possible products of the elements that generate An. Therefore, N must contain
every element of An. That means, An ⊆ N . Also, since N ⊴ An we have N ⊆ An. Combining both
gives N = An, i.e., any non-trivial normal subgroup of An for n > 6 is An itself.

4 Applications

The simplicity of An for n ≥ 5 can be applied in showing the unsolvability of quintic polynomials.
If the roots of a quintic may be found by a radical formula (such as the quadratic formula), then its
Galois group is solvable. That is, there is a composition series {Hi} of the Galois group such that
Hi+1/Hi is abelian for all i. If there is a quintic with a Galois group isomorphic to S5, then because
{e} < A5 < S5 is a composition series, but An is simple for n ≥ 5 as we have shown, so A5/{e} is
not abelian. Thus the roots of such a quintic could not be found by a radical formula, which would
mean that quintics (and, by extension, higher polynomials) cannot be, in general, solved by a radical
formula as lower order polynomials can.
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