A_n is simple for $n \geq 5$

Sarah Baker, Charlie Heil, Sooraj Soman, Braden Stillmaker

Background

DEFINITION

Simple groups: A group is simple when it is nontrivial and there are no normal subgroups besides the trivial group and the group itself.

WHY $n \ge 5$?

HOW

Lemmas:

- o 3-cycles
- Conjugates
- \circ A_5 and A_6

Theorem: A_n is simple for $n \geq 5$

Application

Lemma 1: A_n is generated by 3-cycles

Proof:

Identity element:
$$e = (1) = (1 \ 2 \ 3)(1 \ 3 \ 2)$$

Nonidentity elements: $\sigma = \tau_1 \tau_2 ... \tau_r$ where σ is a product of transpositions.

Case 1: τ_i and τ_{i+1} are equal.

We see that $\tau_i \tau_{i+1} = (1) = (123)(132)$. Therefore, $\tau_i \tau_{i+1}$ is the product of two 3-cycles.

Case 2: τ_i and τ_{i+1} have exactly one element in common.

Let the common element be a, so let $\tau_i = (ab)$ and $\tau_{i+1} = (ac)$ where $b \neq c$. From this we have $\tau_i \tau_{i+1} = (ab)(ac) = (acb) = (abc)(abc)$. Therefore, $\tau_i \tau_{i+1}$ is the product of two 3-cycles.

Case 3: τ_i and τ_{i+1} are disjoint.

Let $\tau_i = (ab)$ and $\tau_{i+1} = (cd)$. Then $\tau_i \tau_{i+1} = (ab)(cd) = (ab)(bc)(bc)(cd) = (bca)(cdb) = (abc)(bcd)$. Therefore, $\tau_i \tau_{i+1}$ is the product of two 3-cycles.

Lemma 1.3: For $n \ge 5$, the conjugate of all 3-cycles in A_n are 3-cycles.

Lemma 1.2: For $n \ge 5$, all 3-cycles A_n in are conjugate in .

• Consider a 3-cycle (abc). We show that it is conjugate to (123). Conjugacy is an equivalence relation, so it follows that all 3-cycles are conjugate.

$$(123) = [(1a)(2b)(3c)](abc)[(1a)(2b)(3c)]^{-1}.$$

$$(123) = [(1a)(2b)(3c)](abc)[(1a)(2b)(3c)]^{-1}$$

Lemma 1.2: For $n \geq 5$, all 3-cycles in A_n are conjugate in A_n .

- Case $1(1a)(2b)(3c) \in A_n$
 - (abc) and (123) are conjugate ¾n
 , as desired
- Case $2(1a)(2b)(3c) \notin \Lambda_n$
 - We append (45) to the permutation to make it even; the claim follows

$$(123) = (45)(123)(45)$$

$$= (45)[(1a)(2b)(3c)](abc)[(1a)(2b)(3c)]^{-1}(45)$$

$$= [(45)(1a)(2b)(3c)](abc)[(45)(1a)(2b)(3c)]^{-1}$$

A_5 is Simple

- Recall:
 - Conjugacy is an equivalence relation
 - Lagrange's Theorem: The order of a subgroup divides the order of the group
- The order of all conjugacy classestin are given in the following table:

Table 1: A_5 Conjugacy Classes

Representative	е	(12345)	(21345)	(12)(34)	(123)
Order	1	12	12	15	20

- A_6 is simple by a similar argument

A_n is Simple for n > 6

Each $N \subseteq A_n$ s.t. $N \neq \{e\}$ contains a 3-cycle

Lemma 1.2

N contains all 3-cycles

Lemma 1

$$N = A_n$$

Each $N \subseteq A_n$ s.t. $N \neq \{e\}$ contains a 3-cycle

$$H \cong A_6$$
 s.t. $H \subseteq N$

 A_6 contains even permutations

 A_6 contains 3-cycles

H contains 3-cycles

N contains 3-cycles

$$H \cong A_6$$
 s.t. $H \subseteq N$

Let

 $\sigma \in N \subseteq A_n$ a non-identity element, i.e., $\sigma(l) \neq l$ for some $l \in \{1, 2, \dots, n\}$ $\tau = (i \ j \ k) \in A_n$ where $i, j, k \neq l$ and $\sigma(l) \in \{i, j, k\}$

$$\sigma, \tau \sigma \tau^{-1} \in N \implies \mu = (\tau \sigma \tau^{-1}) \sigma^{-1} \in N$$

$$\tau \sigma \tau^{-1}(l) = \tau(\sigma(l)) \neq \sigma(l)$$

$$\therefore \tau \sigma \tau^{-1} \neq \sigma$$

$$\mu = \tau \sigma \tau^{-1} \sigma^{-1} \neq (1)$$

$$\sigma \tau^{-1} \sigma^{-1} \text{ is also a 3-cycle}$$

$$\mu = \tau \sigma \tau^{-1} \sigma^{-1} \neq (1)$$

Lemma 1.3

$$\sigma \tau^{-1} \sigma^{-1}$$
 is also a 3-cycle

 $\mu = \tau(\sigma \tau^{-1} \sigma^{-1}) \in N$ is a product of two 3-cycles

$$H \cong A_6$$
 s.t. $H \subseteq N$

 $\mu = \tau(\sigma \tau^{-1} \sigma^{-1}) \in N$ is a product of two 3-cycles

 μ permutes at most 6 numbers in $\{1, \dots, n\}$

H: Even permutation of these numbers (augmented)

$$H\cong A_6$$
 & $\mu\in H$

Is H a subset of $N \subseteq A_n$?

$H\cong A_6$ s.t. $H\subseteq N$

 $N \cap H = H$

$$h \in A_n \quad and \quad n \in N \cap H \implies n \in N \quad and \quad N \trianglelefteq A_n$$

$$\therefore \quad hnh^{-1} \in N$$

$$h \in H \implies h^{-1} \in H \quad and \quad n \in N \cap H \implies n \in H$$

$$\therefore \quad hnh^{-1} \in H$$

$$N \cap H \triangleleft H$$

 $hnh^{-1} \in N \cap H$

 $N \cap H \leq H$

 $H \cong A_6$ Simple

 $N \cap H \in \{(1), H\}$

$$\mu \in H$$

$$\mu \in N$$

$$\mu \neq (1)$$

$$\mu \in N \cap H$$

 $N \cap H$ is non-trivial

Each $N \subseteq A_n$ s.t. $N \neq \{e\}$ contains a 3-cycle

$$H \cong A_6$$
 s.t. $H \subseteq N$

H contains 3-cycles

N contains 3-cycles

A_n is Simple for n > 6

Each $N \subseteq A_n$ s.t. $N \neq \{e\}$ contains a 3-cycle

Lemma 1.2

N contains all 3-cycles

Lemma 1

 $N = A_n$

Application s

Solvability of Quintics

A polynomial is solvable by radical formula

The Galois group is solvable

Solvability of Quintics

A polynomial is solvable by radical formula

The Galois group is solvable

 A_5 is simple

 S_5 is not solvable

Solvability of Quintics

A polynomial is solvable by radical formula

The Galois group is solvable A_5 is simple S_5 is not solvable

There is a quintic with Galois group S_5 Quintics are not, in general, solvable by radical formula