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e Wwe require a binary operation on a set S to be defined for every ordered
pair (a, b) of elements from S.

Let * be a binary operation on S and let H be a subset of §. The subset H is closed
under = if for alla, b € H we also have a * b € H. In this case, the binary operation on
H given by restricting * to H is the induced operation of * on H. |
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A binary operation on a set S is associative if (a x b) x c = a % (b % c)foralla, b, c € S.

1. exactly one element is assigned to each possible ordered pair of elements of S,

2. foreach ordered pair of elements of S, the element assigned to it is again in S.


















On Q, leta = b = a/b. Here * is not everywhere defined on (Q, for no rational number is
assigned by this rule to the pair (2, 0). A

On Q™, let a * b = a/b. Here both Conditions 1 and 2 are satisfied, and * is a binary
operation on Q. A

On Z*, let a * b = a/b. Here Condition 2 fails, for 1 * 3 is not in Z". Thus * is not a
binary operation on Z™, since Z* is not closed under . A

Let F be the set of all real-valued functions with domain R as in Example 2.7. Suppose
we “define” * to give the usual quotient of f by g, that is, f * g = h, where h(x) =
f(x)/g(x). Here Condition 2 is violated, for the functions in ' were to be defined for
all real numbers, and for some g € F, g(x) will be zero for some values of x in R and
h(x) would not be defined at those numbers in R. For example, if f(x) = cosx and
glx) = x2, then A(0) is undefined, so h ¢ F. A

Let F' be as in Example 2.22 and let f * g = h, where h is the function greater than
both f and g. This “definition” is completely worthless. In the first place, we have not
defined what it means for one function to be greater than another. Even if we had, any
sensible definition would result in there being many functions greater than both f and
g, and x would still be not well defined. A

Let § be a set consisting of 20 people, no two of whom are of the same height. Define
* by a * b = ¢, where c is the tallest person among the 20 in S. This is a perfectly good
binary operation on the set, although not a particularly interesting one. A

Let S be as in Example 2.24 and let a % b = ¢, where c is the shortest person in S who
is taller than both @ and b. This * is not everywhere defined, since if either a or b is the
tallest person in the set, a * b is not determined. A





IsoMORPHIC BINARY STRUCTURES

Let (S, ) and (S’, *") be binary algebraic structures. An isomorphism of S with §’ is a
one-to-one function ¢ mapping S onto S’ such that
f_ifkv\‘t . QA ‘@“’W\‘:W\ ¢; o 5 SH(M M

¢(x*y) =¢(x-) *' ¢’(V) for all X,y € S. . qS & oNne-fy — oNE
. @ onte
homomorphism property ) ZC‘:; H)°= ACO+ B N HyeS

(homornsmpiise psopest)

If such a map ¢ exists, then S and S’ are isomorphic binary structures, which we

denote by § ~ §’, omitting the x and %" from the notation. [ |
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A group (G, *) is a set G, closed under a binary operation *, such that the following
axioms are satisfied:

‘%:Foralla, b, c € G, we have

(axb)xc=ax(b=xc). associativity of x
‘%,: There is an element e in G such that for all x € G,

exx =x*e =x. identity element e for x

%, Corresponding to each a € G, there is an element a’ in G such that

axa =a xa=-e. inversea ofa
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A subset H of a group G is a subgroup of G if and only if

1. H is closed under the binary operation of G,
2. the identity element e of G is in H,
3. foralla € H itistrue thata~!' € H also.
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Division Algorithm for Z If m is a positive integer and n is any integer, then there exist unique integers ¢
and r such that

n=mq+r and 0<r <m.
























Theorem

Proof

A subgroup of a cyclic group is cyclic.

Let G be a cyclic group generated by a and let H be a subgroup of G. If H = {e}, then
H = (e) is cyclic. If H # {e}, then a" € H for some n € Z". Let m be the smallest
integer in Z" such that a” € H.

We claim that ¢ = a™ generates H; that is,

We must show that every b € H is a power of ¢. Since b € H and H < G, we have
b = a" for some n. Find g and r such that

n=mq-+r for 0<r<m
in accord with the division algorithm. Then
a" = a™t = (@"Ya",
SO
a" =@ a".
Now since a" € H, a™ € H, and H is a group, both (a™) ¢ and a" are in H. Thus
(@) 1a" e H; that is, a € H.

Since m was the smallest positive integer such that a” € H and 0 < r < m, we must
have r = 0. Thus n = gm and

b=a" =@ =,
so b is a power of c. *

As noted in Examples 5.21 and 5.22, Z under addition is cyclic and for a positive
integer n, the set nZ of all multiples of n is a subgroup of Z under addition, the cyclic
subgroup generated by n. Theorem 6.6 shows that these cyclic subgroups are the only
subgroups of Z under addition. We state this as a corollary.
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Intuitively, a digraph consists of a finite number of points, called vertices of the

could use different colors for different arc types in pencil and paperwork. Since different
colors are not available in our text, we use different style arcs, like solid, dashed, and
dotted, to denote different generators. Thu—

With this notation,

That is, traveling an arc in the direction of the arrow indicates that multiplication
of the group element at the start of the arc on the right by the generator corresponding
to that type of arc yields the group element at the end of the arc. Of course, since
we are in a group, we know immediately that ya~! = x. Thus traveling an arc in the
direction opposite to the arrow corresponds to multiplication on the right by the inverse
of the corresponding generator

5 | 0 1 2 3
4
3 5
(a) (b)

7.8 Figure Two digraphs for Zg with § = {1} using B —

n
et

7.9 Figure  Two digraphs for Z¢ with § = {2, 3} using R and - ————__..








































8.14 Definition Let f : A — B be a function and let H be a subset of A. The image of H under f is
{f(h)|h € H} and is denoted by f[H]. [ |

8.15 Lemma Let G and G’ be groups and let ¢ : G — G’ be a one-to-one function such that ¢(xy) =
¢(x)p(y) forallx, y € G.Then ¢[G]is a subgroup of G’ and ¢ provides an isomorphism
of G with ¢[G].

(Cayley’s Theorem) Every group is isomorphic to a group of permutations.
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element a in a group G has order r» > 0 if a” = e and no smaller positive power
of a is the identity.

A permutation o € S, is a cyele if it has at most one orbit containing more than one
element. The length of a cycle is the number of elements in its largest orbit.
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(a) What is the order of the cycle (1457)7 What about the order of (57326)7
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(b) State a theorem suggest by (a). You do not need to prove it.
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(c) What is the order of o = (45)(237)? of 7 = (14)(3578)7
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(d) State a theorem suggest by (c¢). You do not need to prove it.
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Each permutation o of a set A determines a natural partition of A into cells with the
property that a, b € A are in the same cell if and only if b = ¢"(a) for some n € Z. We
establish this partition using an appropriate equivalence relation:

Fora,b € A, leta ~ b if and only if b = ¢"(a) for some n € Z. 1)
We now check that ~ defined by Condition (1) is indeed an equivalence relation.

Reflexive Clearly a ~ a since a = 1(a) = 0%(a).

Symmetric If @ ~ b, then b = ¢"(a) for some n € Z. But then a = o 7"(b)
and —n € Z,s0 b ~ a.

Transitive Supposea ~ bandb ~ c¢,thenb = ¢"(a)and c = o™ (b) forsome
n,m € 7. Substituting, we find that ¢ = 6™ (0" (a)) = """ (a),
s04a ~ c.

Let o be a permutation of a set A. The equivalence classes in A determined by the
equivalence relation (1) are the orbits of ¢. |

Since the identity permutation ¢ of A leaves each element of A fixed, the orbits of ¢ are
the one-element subsets of A. A

Theorem Every permutation ¢ of a finite set is a product of disjoint cycles.

Proof Let By, Bo,---, B, be the orbits of ¢, and let y; be the cycle defined by

a(x) forx € B;
X otherwise.

pi(x) = {

Clearly o = ey 42 - - - j1. Since the equivalence-class orbits By, B,, - - -, B, being dis-
tinct equivalence classes, are disjoint, the cycles w1, pa, - - -, i, are disjoint also. L 2

While permutation multiplication in general is not commutative, it is readily seen
that multiplication of disjoint cycles is commutative. Since the orbits of a permutation
are unique, the representation of a permutation as a product of disjoint cycles, none of
which is the identity permutation, is unique up to the order of the factors.











9.9 Example Consider the permutation
1 2 3 45 6
6 5 2 4 3 1)
Let us write it as a product of disjoint cycles. First, 1 is moved to 6 and then 6 to 1, giving

the cycle (1, 6). Then 2 is moved to 5, which is moved to 3, which is moved to 2, or
(2, 5, 3). This takes care of all elements but 4, which is left fixed. Thus

123456
(6 5243 1):(1’6)(2=5’3)'

Multiplication of disjoint cycles is commutative, so the order of the factors (1, 6) and
(2, 5, 3) is not important. A

9.10 Example Consider the cycles (1,4,5,6) and (2,1,5) in Sg. Multiplying, we find that

123456)

(1,4,5,6)(251’5):(5 4 3 5 2 1

and

1 2 3 4 5 6
<2,1,5)(1,4,5,6)_(4 AR 5).

Neither of these permutations is a cycle.

A cycle of length 2 is a transposition. u

Thus a transposition leaves all elements but two fixed, and maps each of these onto
the other. A computation shows that

(a19 azy, -+, an) = (als an)(als a.’!*]) e (aly a3)(als a2)'

Therefore any cycle is a product of transpositions.






















Proof 1 (From We remarked in Section 8 that §4 ~ Sp if A and B have the same cardinality. We

linear algebra) work with permutations of the n rows of the n x n identity matrix I,, rather than of the
numbers 1, 2, ..., n. The identity matrix has determinant 1. Interchanging any two rows
of a square matrix changes the sign of the determinant. Let C be a matrix obtained by a
permutation o of the rows of I,,. If C could be obtained from 7, by both an even number
and an odd number of transpositions of rows, its determinant would have to be both 1
and —1, which is impossible. Thus o cannot be expressed both as a product of an even
number and an odd number of transpositions.
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Theorem Let H be a subgroup of G. Let the relation ~; be defined on G by
a~pb if and only if a'beH.
Let ~¢ be defined by
a~rb if and only if ab~' e H.
Then ~; and ~ are both equivalence relations on G.

Proof We show that ~; is an equivalence relation, and leave the proof for ~5 to Exercise 26.
‘When reading the proof, notice how we must constantly make use of the fact that H is

a subgroup of G.
Reflexive Leta € G.Thena™'a = eand e € H since H is a subgroup. Thus
a~p d.
Symmetric  Supposea ~; b.Thena~'h € H.Since H isasubgroup, (a ')~}
isin Hand (a~'b)"' = b 'a, sob 'aisin H and b ~ a.
Transitive Leta ~; bandb ~; c. Thena™'b € Hand b~ 'c € H. Since H
is a subgroup, (a~'b)(b~'¢) =a"'cisin H,s0a ~; c. *
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