SOORAJ SOMAN | Math 5105 Modern Algebra Notes _ Student ID: 12617667, Computer Science, Missouri S&T Rolla, MO, USA | Phone: 573 537 0671, +91 9400635788 ss4kx@umsystem.edu | soorajss1729@gmail.com • we require a binary operation on a set S to be defined for *every* ordered pair (a, b) of elements from S. Let * be a binary operation on S and let H be a subset of S. The subset H is **closed** under * if for all $a, b \in H$ we also have $a * b \in H$. In this case, the binary operation on H given by restricting * to H is the **induced operation** of * on H. => * is the induced binary operation on H. $$Ex: a * b = min 2a, b$$ $Ex: a * b = a$ $b * a = b$ $C((0,1)) = 2f$ is cont's: $f:(0,1) \rightarrow (0,1)$? + is not an induced binary operation on R* Because 26R, -26R but -2+2=0 & R* * such that a*b= % is not a binary operation for Q $$f \circ g)(x) = f(g(x)) \xrightarrow{\sum_{n \in Sana}} not \text{ necessarily}$$ $$f \circ g)(x) = g(f(x))$$ $$f(x) = g(f(x))$$ $$f(x) = \sqrt{1-x}$$ $$g(x) = x^{2}$$ $$(f \circ g)(x) = \sqrt{1-x^{2}}, (g \circ f)(x) = 1-x$$ $$Defn: (a \times b) \times c = a \times (b \times c)$$ $$associative \text{ property}$$ A binary operation on a set S is **associative** if (a * b) * c = a * (b * c) for all $a, b, c \in S$. - **1.** exactly one element is assigned to each possible ordered pair of elements of S, - **2.** for each ordered pair of elements of S, the element assigned to it is again in S. On \mathbb{Q} , let a * b = a/b. Here * is *not everywhere defined* on \mathbb{Q} , for no rational number is assigned by this rule to the pair (2, 0). On \mathbb{Q}^+ , let a * b = a/b. Here both Conditions 1 and 2 are satisfied, and * is a binary operation on \mathbb{Q}^+ . On \mathbb{Z}^+ , let a*b=a/b. Here Condition 2 fails, for 1*3 is not in \mathbb{Z}^+ . Thus * is not a binary operation on \mathbb{Z}^+ , since \mathbb{Z}^+ is *not closed under* *. Let F be the set of all real-valued functions with domain \mathbb{R} as in Example 2.7. Suppose we "define" * to give the usual quotient of f by g, that is, f*g=h, where h(x)=f(x)/g(x). Here Condition 2 is violated, for the functions in F were to be defined for all real numbers, and for some $g \in F$, g(x) will be zero for some values of x in \mathbb{R} and h(x) would not be defined at those numbers in \mathbb{R} . For example, if $f(x) = \cos x$ and $g(x) = x^2$, then h(0) is undefined, so $h \notin F$. Let F be as in Example 2.22 and let f * g = h, where h is the function greater than both f and g. This "definition" is completely worthless. In the first place, we have not defined what it means for one function to be greater than another. Even if we had, any sensible definition would result in there being many functions greater than both f and g, and * would still be *not well defined*. Let S be a set consisting of 20 people, no two of whom are of the same height. Define * by a * b = c, where c is the tallest person among the 20 in S. This is a perfectly good binary operation on the set, although not a particularly interesting one. Let S be as in Example 2.24 and let a * b = c, where c is the shortest person in S who is taller than both a and b. This * is not everywhere defined, since if either a or b is the tallest person in the set, a * b is not determined. Let $\langle S, * \rangle$ and $\langle S', *' \rangle$ be binary algebraic structures. An **isomorphism of** S with S' is a one-to-one function ϕ mapping S onto S' such that $\phi(x * y) = \phi(x) *' \phi(y)$ for all $x, y \in S$. homomorphism property There exists a function φ: S→S' such that • φ is one-to-one • φ is onto • φ(x*y)= φ(x)*'φ(y) + x,y∈S (homomorphism property) If such a map ϕ exists, then <u>S</u> and <u>S'</u> are **isomorphic binary structures**, which we denote by $S \simeq S'$, omitting the * and *' from the notation. A binary structure is "the same" same structure as another if (i) there is a one-to-one function. (3) $$f(x * y) = f(x) *'f(y)$$ Homomorphism property Defn: A structural property of a binary structure is a prop. that is shored by all isomorphic structures. - (1) Cardinality of the sets (2) Solutions to equations - (3) Operation is commutative A function between S and S' satisfying these three conditions are called isomorphisms. $$f: \langle U_n, \cdot \rangle \longrightarrow \langle \mathbb{Z}/n\mathbb{Z}, + \rangle$$ $$f(e^{(\frac{\pi i}{n})k}) = \overline{k} \quad \text{is an isomorphism}$$ Note: Let the equation a* x=b is in 1 (Six) where albixes. $$\phi(a*a) = \phi(a)*\phi(x) = \phi(b)$$ $$\Rightarrow \# \text{ is a solution to the eq.}$$ $$a*a=b \text{ in } \langle s,*\rangle, \text{ then}$$ $$\phi(a) \text{ is a solution to the eq.}$$ $$\phi(a)* \mathcal{Y} = \phi(b) \text{ in } \langle s,*\rangle.$$ $$where \quad \mathcal{Y} = \phi(a).$$ Defn: The identity of an algebraic structure $$\langle S, \star \rangle$$ is an element e such that $e \times x = x * e = x$ Theorem: If a binary structure has an identity element, then that element is unique. Proof: Let $$\langle S, \star \rangle$$ be the structure and suppose e and e' satisfy $x \star e = e \star x = x$ $x \star e' = e' \star x = x$ for all $$x \in S$$. $e = e \times e' = e'$ $\Rightarrow e = e'$ Q.E.D. Theorem: Suppose < S, *7 has an identity element e. If $\varphi: S \rightarrow S'$ is an isomorphism of <5,*> with <5',*'>, then q(e) is an identity element of S'. $$\begin{array}{ll} (roof: Let S' \in S') \\ (rool: \varphi(e) *'s' = s' *' \varphi(e) = s' \\ s' \in range(\varphi) = S' \varphi(s) = S' \\ \varphi(e) *' \varphi(s) = \varphi(e * s) = \varphi(s * e) \\ = \varphi(s) = \varphi(s) *' \varphi(e) = S' S$$ Thus, gle) satisfies the conditions of an identity element in S'. Q.E.D. A **group** $\langle G, * \rangle$ is a set G, closed under a binary operation *, such that the following axioms are satisfied: \mathcal{G}_1 : For all $a, b, c \in G$, we have $$(a*b)*c = a*(b*c)$$. associativity of * \mathcal{S}_2 : There is an element e in G such that for all $x \in G$, $$e * x = x * e = x$$. identity element e for $*$ \mathcal{G}_3 : Corresponding to each $a \in G$, there is an element a' in G such that $$a*a'=a'*a=e$$. **inverse** a' of a Ex:- $$\langle \Xi, + \rangle_1 \langle Q, + \rangle$$ are groups $\langle \Xi, \cdot \rangle$ is not a group $\left[2^{-1} \notin \Xi \right]$ $\langle Q, \cdot \rangle$ is not a group $\left[Q^+ = Q - \Theta \right] = \left[\Theta$ * A group G is **abelian** if its binary operation is commutative. Notation: $$H \leq G \quad \text{means } H \text{ is a}$$ $$Subgroup \text{ of } G.$$ $$G \text{ is an improper subgroup of itself.}$$ $$G \leq G$$ A subset H of a group G is a subgroup of G if and only if - **1.** H is closed under the binary operation of G, - 2. the identity element e of G is in H, - **3.** for all $a \in H$ it is true that $a^{-1} \in H$ also. (1) Let h, , h2 E cp(H). Thm: let G and G' be WTS: hi * hz & cp(H) groups with binary operations * and *' respectively. Let q: G > G' be an iso. ∃ h, h2 ∈ H s.t. φ(h1) = h; t₁₋₁, anto, φ(g,*gz)=φ(g,)*φ() For any $H \leq G$, $\varphi(H) \leq G'$. φ(hz)=h2 $\varphi(h_1) \times \varphi(h_2) \stackrel{?}{\in} \varphi(H)$ $\varphi(h_1 * h_2) \in \varphi(H)$ Since H = G, h, * hz & H => q(hi*hz) E q(H). (2) |s e' & q(H)? $e \in H$ since $H \subseteq G$ and $\varphi(e) = e'$. Since $H \subseteq G$, $h' \in H$. (3) Let h' ε φ(H) WTS: (h') E P(H) B h ∈ H s.t. φ(h) = h'. $e' = \varphi(e) = \varphi(h * h^{-1}) = \varphi(h) * (\varphi(h^{-1}))$ $\varphi(h^{-1}) = (\varphi(h))^{-1} \in \varphi(H)$ (h')-1 Proof: Let h, hz EH. Thm: Let a & G and define $h_1 = a^m$, $h_2 = a^k$ for some $m_1 k \in \mathbb{Z}$ $H = \left\{ \alpha^{n} : n \in \mathbb{Z} \right\}$ (1) hihz= amak = am+k e H Then H \ G. H= La>: subgroup generated This is called a cyclic goods. (3) For help, h=ak, h=ak since $(a^k)(a^{-k}) = a^0 = e$: H is a subgroup of Gr. **Division Algorithm for** \mathbb{Z} If m is a positive integer and n is any integer, then there exist unique integers q and r such that $$n = mq + r$$ and $0 \le r < m$. ### Theorem A subgroup of a cyclic group is cyclic. **Proof** Let G be a cyclic group generated by a and let H be a subgroup of G. If $H = \{e\}$, then $H = \langle e \rangle$ is cyclic. If $H \neq \{e\}$, then $a^n \in H$ for some $n \in \mathbb{Z}^+$. Let m be the smallest integer in \mathbb{Z}^+ such that $a^m \in H$. We claim that $c = a^m$ generates H; that is, $$H = \langle a^m \rangle = \langle c \rangle.$$ We must show that every $b \in H$ is a power of c. Since $b \in H$ and $H \le G$, we have $b = a^n$ for some n. Find q and r such that $$n = mq + r$$ for $0 \le r < m$ in accord with the division algorithm. Then $$a^n = a^{mq+r} = (a^m)^q a^r,$$ SO $$a^r = (a^m)^{-q} a^n.$$ Now since $a^n \in H$, $a^m \in H$, and H is a group, both $(a^m)^{-q}$ and a^n are in H. Thus $$(a^m)^{-q}a^n \in H;$$ that is, $a^r \in H.$ Since m was the smallest positive integer such that $a^m \in H$ and $0 \le r < m$, we must have r = 0. Thus n = qm and $$b = a^n = (a^m)^q = c^q$$, so b is a power of c. As noted in Examples 5.21 and 5.22, \mathbb{Z} under addition is cyclic and for a positive integer n, the set $n\mathbb{Z}$ of all multiples of n is a subgroup of \mathbb{Z} under addition, the cyclic subgroup generated by n. Theorem 6.6 shows that these cyclic subgroups are the only subgroups of \mathbb{Z} under addition. We state this as a corollary. Thm: Let G be a cyclic group with n elements and generated by a. Let $b \in G$ with $b = a^s$. Then b generates a subgroup with d elements where d = (n,s). Let $G = \langle a \rangle$ |G| = n, Proof: Clearly $$\langle b \rangle$$ is a subgroup The only way $a^k = e$ is if $n \mid k \implies n \mid sm$. $n \mid k \implies n \mid sm$. The smallest integer such that $b^m = e$. Let $d = (s, n)$. There exist $u, v \in \mathbb{Z}$. $d = us + vn$ =$ $$\frac{sm}{n} = \frac{\left(\frac{s}{a}\right)m}{\left(\frac{n}{a}\right)} =) \text{ we must}$$ have $\frac{n}{d} \mid m$ and it follows $$m \text{ is at least } \frac{n}{d} =) m = \frac{n}{d}.$$ Thus, $|4b7| = \frac{n}{d}$. Q.E.D. Section 7: Generating Sets and Cayley ab abab abab abab Digraphs Klein-4 group: $\{(\overline{0},\overline{0}),(\overline{1},\overline{0}),(\overline{0},\overline{1}),(\overline{1},\overline{1})\}$ with $\frac{1}{2}$ $\{(\overline{0},\overline{0}),(\overline{1},\overline{0}),(\overline{0},\overline{1}),(\overline{1},\overline{1})\}$ read ont have to be commutative $$\langle a^{s} \rangle = \langle a^{t} \rangle \text{ if and only if}$$ $$(s,n) = \langle t,n \rangle \Rightarrow \gcd(sn) = \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \text{ if and only if}$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \text{ if and only if}$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} \rangle = \langle a^{t} \rangle \Rightarrow \gcd(t,n)$$ $$\langle a^{s} $$\overline{Z}_{18} = \overline{Z}/18\overline{Z} = \{0,1,2,...,17\}$$ # Lagrange's theorem: Subgroup of order $$1 = \langle 0 \rangle$$, 1) order $2 = \langle \frac{pg}{2} \rangle = \langle 9 \rangle$ = $20,9$? 1) order $$3 = \langle \frac{18}{3} \rangle = \langle 6 \rangle = \frac{20}{5}, 6, 12$$ **6.18 Figure** Subgroup diagram for \mathbb{Z}_{18} . $$\begin{array}{c} \text{Λ Si$} \\ \text{$i \in I$} \end{array}$$ Theorem: The intersection of subgroups $$S_i \text{ is again a subgroup.} \end{array}$$ Cayley Digraphs. Intuitively, a **digraph** consists of a finite number of points, called **vertices** of the digraph, and some **arcs** (each with a direction denoted by an arrowhead) joining vertices. In a digraph for a group G using a generating set S we have one vertex, represented by a dot, for each element of G. Each generator in S is denoted by one type of arc. We could use different colors for different arc types in pencil and paperwork. Since different colors are not available in our text, we use different style arcs, like solid, dashed, and dotted, to denote different generators. Thus if $S = \{a, b, c\}$ we might denote $$a \text{ by} \longrightarrow$$, $b \text{ by} \longrightarrow$, and $c \text{ by} \longrightarrow$. With this notation, an occurrence of x o o y in a Cayley digraph means that xa = y. That is, traveling an arc in the direction of the arrow indicates that multiplication of the group element at the start of the arc on the right by the generator corresponding to that type of arc yields the group element at the end of the arc. Of course, since we are in a group, we know immediately that $ya^{-1} = x$. Thus traveling an arc in the direction opposite to the arrow corresponds to multiplication on the right by the inverse of the corresponding generator. If a generator in S is its own inverse, it is customary to denote this by omitting the arrowhead from the arc, rather than using a double arrow. For example, if $b^2 = e$, we might denote b by -----. Defn: The set of permutations $$|S_n| = n!$$ on n elements is denoted S_n $$S_n = \text{symmetric group on } n \text{ letters}$$ $$|S_n| = n!$$ $$\rho_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \quad \mu_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$ $$\rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \mu_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$ $$\rho_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \quad \mu_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$ Proof: (1) Closed under the operation (2) Identity (3) Inverses **8.14 Definition** Let $f: A \to B$ be a function and let H be a subset of A. The **image of** H **under** f is $\{f(h) | h \in H\}$ and is denoted by f[H]. **8.15 Lemma** Let G and G' be groups and let $\phi: G \to G'$ be a one-to-one function such that $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in G$. Then $\phi[G]$ is a subgroup of G' and ϕ provides an isomorphism of G with $\phi[G]$. (Cayley's Theorem) Every group is isomorphic to a group of permutations. The orbit of an element a under a permutation of is the set of all elements that a can be mapped to by repeated applications of o. Let A be a set and let $\sigma \in S_A$. For a fixed a $\in A$, the set $O_{a|\sigma} = \{\sigma(a) : n \in Z\}$ is the orbit of a under σ . $$7 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$$ 7(1)=2,7(2)=4,7(4)=3,7(3)=1 : The orbit of I under the pormutation Z is, element a in a group G has order r > 0 if $a^r = e$ and no smaller positive power of a is the identity. A permutation $\sigma \in S_n$ is a **cycle** if it has at most one orbit containing more than one element. The **length** of a cycle is the number of elements in its largest orbit. 58 is the symmetric group on the set $$\S1,2,3,4,5,6,7,8\S$$, which consists of all possible permutations of the 8 elements in the set. (a) What is the order of the cycle (1457)? What about the order of (57326)? Ars: $$(1457) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 2 & 3 & 5 & 7 & 6 & 1 & 8 \end{pmatrix}$$ order of $(1457) = 4$ because if we apply the germulation 4 times, the elements will return to their original positions. $$(57326) = (57326) = (57326) = 5$$ order of $(57326) = 5$ (b) State a theorem suggest by (a). You do not need to prove it. Ans: Theorem - the order of a cycle in a symmetric group is equal to the # of elements in the cycle. (c) What is the order of $\sigma = (45)(237)$? of $\tau = (14)(3578)$? Ons: The 2-ycle (45) returns to the identity after 2 applications, and the 3-ycle (237) returns to the identity after 3 applications. Therefore, the order of identity after 3 applications the smallest # of applications after $\sigma = (45)(237)$ is the smallest # of applications after which both cycles have returned to the identity. The order of $\sigma = (45)(237)$ is LCM(213) = 6. Similarly, the order of (14) = 2the order of (3578) = 4 :. The order of Z= (4)(3578) = LCM(2,4) = 4 (d) State a theorem suggest by (c). You do not need to prove it. Ans: Theorem - The order of a permutation that is the product of disjoint cycles is the least cornerson mutiple (LCM) of the orders of the individual cycles. # The orbits of $\sigma \in S_n$ form an equivalence relation on $\{1,...,n\}$. Each permutation σ of a set A determines a natural partition of A into cells with the property that $a, b \in A$ are in the same cell if and only if $b = \sigma^n(a)$ for some $n \in \mathbb{Z}$. We establish this partition using an appropriate equivalence relation: For $$a, b \in A$$, let $a \sim b$ if and only if $b = \sigma^n(a)$ for some $n \in \mathbb{Z}$. (1) We now check that \sim defined by Condition (1) is indeed an equivalence relation. **Reflexive** Clearly $a \sim a$ since $a = \iota(a) = \sigma^0(a)$. **Symmetric** If $a \sim b$, then $b = \sigma^n(a)$ for some $n \in \mathbb{Z}$. But then $a = \sigma^{-n}(b)$ and $-n \in \mathbb{Z}$, so $b \sim a$. **Transitive** Suppose $a \sim b$ and $b \sim c$, then $b = \sigma^n(a)$ and $c = \sigma^m(b)$ for some $n, m \in \mathbb{Z}$. Substituting, we find that $c = \sigma^m(\sigma^n(a)) = \sigma^{n+m}(a)$, so $a \sim c$. Let σ be a permutation of a set A. The equivalence classes in A determined by the equivalence relation (1) are the **orbits of** σ . Since the identity permutation ι of A leaves each element of A fixed, the orbits of ι are the one-element subsets of A. **Theorem** Every permutation σ of a finite set is a product of disjoint cycles. **Proof** Let B_1, B_2, \dots, B_r be the orbits of σ , and let μ_i be the cycle defined by $$\mu_i(x) = \begin{cases} \sigma(x) & \text{for } x \in B_i \\ x & \text{otherwise.} \end{cases}$$ Clearly $\sigma = \mu_1 \mu_2 \cdots \mu_r$. Since the equivalence-class orbits B_1, B_2, \cdots, B , being distinct equivalence classes, are disjoint, the cycles $\mu_1, \mu_2, \cdots, \mu_r$ are disjoint also. While permutation multiplication in general is not commutative, it is readily seen that *multiplication of disjoint cycles is commutative*. Since the orbits of a permutation are unique, the representation of a permutation as a product of disjoint cycles, none of which is the identity permutation, is unique up to the order of the factors. $$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 4 & 3 & 1 \end{pmatrix}.$$ Let us write it as a product of disjoint cycles. First, 1 is moved to 6 and then 6 to 1, giving the cycle (1, 6). Then 2 is moved to 5, which is moved to 3, which is moved to 2, or (2, 5, 3). This takes care of all elements but 4, which is left fixed. Thus $$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 4 & 3 & 1 \end{pmatrix} = (1, 6)(2, 5, 3).$$ Multiplication of *disjoint* cycles is commutative, so the order of the factors (1, 6) and (2, 5, 3) is not important. **9.10 Example** Consider the cycles (1,4,5,6) and (2,1,5) in S_6 . Multiplying, we find that $$(1,4,5,6)(2,1,5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 3 & 5 & 2 & 1 \end{pmatrix}$$ and $$(2,1,5)(1,4,5,6) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix}.$$ Neither of these permutations is a cycle. # A cycle of length 2 is a **transposition**. Thus a transposition leaves all elements but two fixed, and maps each of these onto the other. A computation shows that $$(a_1, a_2, \dots, a_n) = (a_1, a_n)(a_1, a_{n-1}) \cdots (a_1, a_3)(a_1, a_2).$$ Therefore any cycle is a product of transpositions. Proof 1 (From linear algebra) We remarked in Section 8 that $S_A \simeq S_B$ if A and B have the same cardinality. We work with permutations of the n rows of the $n \times n$ identity matrix I_n , rather than of the numbers $1, 2, \ldots, n$. The identity matrix has determinant 1. Interchanging any two rows of a square matrix changes the sign of the determinant. Let C be a matrix obtained by a permutation σ of the rows of I_n . If C could be obtained from I_n by both an even number and an odd number of transpositions of rows, its determinant would have to be both 1 and -1, which is impossible. Thus σ cannot be expressed both as a product of an even number and an odd number of transpositions. * The subgroup of S, consisting of the even permutations of n letters is the alternating group A, on n letters. **Theorem** Let H be a subgroup of G. Let the relation \sim_L be defined on G by $a \sim_L b$ if and only if $a^{-1}b \in H$. Let \sim_R be defined by $a \sim_R b$ if and only if $ab^{-1} \in H$. Then \sim_L and \sim_R are both equivalence relations on G. **Proof** We show that \sim_L is an equivalence relation, and leave the proof for \sim_R to Exercise 26. When reading the proof, notice how we must constantly make use of the fact that H is a *subgroup* of G. **Reflexive** Let $a \in G$. Then $a^{-1}a = e$ and $e \in H$ since H is a subgroup. Thus $a \sim_L a$. **Symmetric** Suppose $a \sim_L b$. Then $a^{-1}b \in H$. Since H is a subgroup, $(a^{-1}b)^{-1}$ is in *H* and $(a^{-1}b)^{-1} = b^{-1}a$, so $b^{-1}a$ is in *H* and $b \sim_L a$. **Transitive** Let $a \sim_L b$ and $b \sim_L c$. Then $a^{-1}b \in H$ and $b^{-1}c \in H$. Since H is a subgroup, $(a^{-1}b)(b^{-1}c) = a^{-1}c$ is in H, so $a \sim_L c$. at = $$\frac{1}{2}$$ ah: he H $\frac{3}{3}$ Ex: $Z = G$, $3Z = H$ Defn: The left cosets of H are the sets at and the right cosets of H are Ha. Note: Because G is not always delian, at $\frac{1}{2}$ Ex: $$22/620-61$$ H= $<37=30,33$ Theorem (Lagrange's Theorem) $503+H$ $513+H$ 14 divides n. Proof: Let 964 and define $9:H\rightarrow 9H$. |G:H): index of H in Gr -# of distinct cosets of H in Gr. Cor 1: The order of an element in a finite group divides the order of the group Cor 2: Every group of prime order is cyclic. If G is infinite, (G:H) is the number of cosets of H in G.